|
| 1 | +# encoding: utf-8 |
| 2 | +""" |
| 3 | +@author: xyliao |
| 4 | +@contact: xyliao1993@qq.com |
| 5 | +""" |
| 6 | +import copy |
| 7 | + |
| 8 | +import torch |
| 9 | +from config import opt |
| 10 | +from mxtorch import meter |
| 11 | +from mxtorch import transforms as tfs |
| 12 | +from mxtorch.trainer import * |
| 13 | +from mxtorch.vision import model_zoo |
| 14 | +from torch import nn |
| 15 | +from torch.autograd import Variable |
| 16 | +from torch.utils.data import DataLoader |
| 17 | +from torchvision.datasets import ImageFolder |
| 18 | +from tqdm import tqdm |
| 19 | + |
| 20 | +train_tf = tfs.Compose([ |
| 21 | + tfs.RandomResizedCrop(224), |
| 22 | + tfs.RandomHorizontalFlip(), |
| 23 | + tfs.ToTensor(), |
| 24 | + tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
| 25 | +]) |
| 26 | + |
| 27 | + |
| 28 | +def test_tf(img): |
| 29 | + img = tfs.Resize(256)(img) |
| 30 | + img, _ = tfs.CenterCrop(224)(img) |
| 31 | + normalize = tfs.Compose([ |
| 32 | + tfs.ToTensor(), |
| 33 | + tfs.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
| 34 | + ]) |
| 35 | + img = normalize(img) |
| 36 | + return img |
| 37 | + |
| 38 | + |
| 39 | +def get_train_data(): |
| 40 | + train_set = ImageFolder(opt.train_data_path, train_tf) |
| 41 | + return DataLoader(train_set, opt.batch_size, True, num_workers=opt.num_workers) |
| 42 | + |
| 43 | + |
| 44 | +def get_test_data(): |
| 45 | + test_set = ImageFolder(opt.test_data_path, test_tf) |
| 46 | + return DataLoader(test_set, opt.batch_size, True, num_workers=opt.num_workers) |
| 47 | + |
| 48 | + |
| 49 | +def get_model(): |
| 50 | + model = model_zoo.resnet50(pretrained=True) |
| 51 | + model.fc = nn.Linear(2048, 2) |
| 52 | + if opt.use_gpu: |
| 53 | + model = model.cuda(opt.ctx) |
| 54 | + return model |
| 55 | + |
| 56 | + |
| 57 | +def get_loss(score, label): |
| 58 | + return nn.CrossEntropyLoss()(score, label) |
| 59 | + |
| 60 | + |
| 61 | +def get_optimizer(model): |
| 62 | + optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum, |
| 63 | + weight_decay=opt.weight_decay) |
| 64 | + return ScheduledOptim(optimizer) |
| 65 | + |
| 66 | + |
| 67 | +class FineTuneTrainer(Trainer): |
| 68 | + def __init__(self): |
| 69 | + model = get_model() |
| 70 | + criterion = get_loss |
| 71 | + optimizer = get_optimizer(model) |
| 72 | + super().__init__(model, criterion, optimizer) |
| 73 | + |
| 74 | + self.metric_meter['loss'] = meter.AverageValueMeter() |
| 75 | + self.metric_meter['acc'] = meter.AverageValueMeter() |
| 76 | + |
| 77 | + def train(self, train_data): |
| 78 | + self.model.train() |
| 79 | + for data in tqdm(train_data): |
| 80 | + img, label = data |
| 81 | + if opt.use_gpu: |
| 82 | + img = img.cuda(opt.ctx) |
| 83 | + label = label.cuda(opt.ctx) |
| 84 | + img = Variable(img) |
| 85 | + label = Variable(label) |
| 86 | + |
| 87 | + # Forward. |
| 88 | + score = self.model(img) |
| 89 | + loss = self.criterion(score, label) |
| 90 | + |
| 91 | + # Backward. |
| 92 | + self.optimizer.zero_grad() |
| 93 | + loss.backward() |
| 94 | + self.optimizer.step() |
| 95 | + |
| 96 | + # Update meters. |
| 97 | + acc = (score.max(1)[1] == label).float().mean() |
| 98 | + self.metric_meter['loss'].add(loss.data[0]) |
| 99 | + self.metric_meter['acc'].add(acc.data[0]) |
| 100 | + |
| 101 | + # Update to tensorboard. |
| 102 | + # if (self.n_iter + 1) % opt.plot_freq == 0: |
| 103 | + # self.writer.add_scalars('loss', {'train': self.metric_meter['loss'].value()[0]}, self.n_plot) |
| 104 | + # self.writer.add_scalars('acc', {'train': self.metric_meter['acc'].value()[0], self.n_plot}) |
| 105 | + # self.n_plot += 1 |
| 106 | + self.n_iter += 1 |
| 107 | + |
| 108 | + # Log the train metric dict to print result. |
| 109 | + self.metric_log['train loss'] = self.metric_meter['loss'].value()[0] |
| 110 | + self.metric_log['train acc'] = self.metric_meter['acc'].value()[0] |
| 111 | + |
| 112 | + def test(self, test_data): |
| 113 | + self.model.eval() |
| 114 | + for data in tqdm(test_data): |
| 115 | + img, label = data |
| 116 | + if opt.use_gpu: |
| 117 | + img = img.cuda(opt.ctx) |
| 118 | + label = label.cuda(opt.ctx) |
| 119 | + img = Variable(img, volatile=True) |
| 120 | + label = Variable(label, volatile=True) |
| 121 | + |
| 122 | + score = self.model(img) |
| 123 | + loss = self.criterion(score, label) |
| 124 | + acc = (score.max(1)[1] == label).float().mean() |
| 125 | + |
| 126 | + self.metric_meter['loss'].add(loss.data[0]) |
| 127 | + self.metric_meter['acc'].add(acc.data[0]) |
| 128 | + |
| 129 | + # Update to tensorboard. |
| 130 | + # self.writer.add_scalars('loss', {'test': self.metric_meter['loss'].value()[0]}, self.n_plot) |
| 131 | + # self.writer.add_scalars('acc', {'test': self.metric_meter['acc'].value()[0]}, self.n_plot) |
| 132 | + # self.n_plot += 1 |
| 133 | + |
| 134 | + # Log the test metric to dict. |
| 135 | + self.metric_log['test loss'] = self.metric_meter['loss'].value()[0] |
| 136 | + self.metric_log['test acc'] = self.metric_meter['acc'].value()[0] |
| 137 | + |
| 138 | + def get_best_model(self): |
| 139 | + if self.metric_log['test loss'] < self.best_metric: |
| 140 | + self.best_model = copy.deepcopy(self.model.state_dict()) |
| 141 | + self.best_metric = self.metric_log['test loss'] |
| 142 | + |
| 143 | + |
| 144 | +def train(**kwargs): |
| 145 | + opt._parse(kwargs) |
| 146 | + |
| 147 | + train_data = get_train_data() |
| 148 | + test_data = get_test_data() |
| 149 | + |
| 150 | + fine_tune_trainer = FineTuneTrainer() |
| 151 | + fine_tune_trainer.fit(train_data, test_data) |
| 152 | + |
| 153 | + |
| 154 | +if __name__ == '__main__': |
| 155 | + import fire |
| 156 | + |
| 157 | + fire.Fire() |
0 commit comments