|
6 | 6 |
|
7 | 7 | [MxTorch](https://github.com/SherlockLiao/mxtorch)
|
8 | 8 |
|
9 | | -[tensorboardX](https://github.com/lanpa/tensorboard-pytorch) (optional) |
| 9 | +[tensorboardX](https://github.com/lanpa/tensorboard-pytorch) |
10 | 10 |
|
11 | | -按照 pytorch 官网安装 pytorch,将 mxtorch 下载下来,放到根目录,同时可以安装 tensorboardX 实现 tensorboard 可视化 |
| 11 | +按照 pytorch 官网安装 pytorch,将 mxtorch 下载下来,放到根目录,安装 tensorboardX 实现 tensorboard 可视化 |
12 | 12 |
|
13 | 13 | ```bash
|
14 | 14 | \segmentation
|
@@ -37,26 +37,18 @@ bash get_data.sh
|
37 | 37 |
|
38 | 38 | 所有的配置文件都放在 config.py 里面,通过下面的代码来训练模型
|
39 | 39 |
|
40 | | -```python |
| 40 | +```bash |
41 | 41 | python main.py train
|
42 | 42 | ```
|
43 | 43 |
|
44 | 44 | 也可以在终端修改配置,比如改变 epochs 和 batch_size
|
45 | 45 |
|
46 | | -```python |
| 46 | +```bash |
47 | 47 | python main.py train \
|
48 | 48 | --max_epochs=100 \
|
49 | 49 | --batch_size=16
|
50 | 50 | ```
|
51 | 51 |
|
52 | | -#### 可选 |
53 | | - |
54 | | -如果安装了 tensorboardX,则可以使用 tensorboard 可视化,通过 |
55 | | - |
56 | | -```bash |
57 | | -python main.py train --vis_dir='./vis' |
58 | | -``` |
59 | | - |
60 | 52 |
|
61 | 53 |
|
62 | 54 | ### 训练效果
|
|
0 commit comments