Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 1c64aab

Browse files
Add files via upload
1 parent e337a27 commit 1c64aab

File tree

2 files changed

+758
-0
lines changed

2 files changed

+758
-0
lines changed

‎Logic_functions.ipynb

Lines changed: 379 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,379 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Logic functions"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": 1,
13+
"metadata": {
14+
"collapsed": true
15+
},
16+
"outputs": [],
17+
"source": [
18+
"import numpy as np"
19+
]
20+
},
21+
{
22+
"cell_type": "code",
23+
"execution_count": 2,
24+
"metadata": {
25+
"collapsed": false
26+
},
27+
"outputs": [
28+
{
29+
"data": {
30+
"text/plain": [
31+
"'1.11.2'"
32+
]
33+
},
34+
"execution_count": 2,
35+
"metadata": {},
36+
"output_type": "execute_result"
37+
}
38+
],
39+
"source": [
40+
"np.__version__"
41+
]
42+
},
43+
{
44+
"cell_type": "markdown",
45+
"metadata": {},
46+
"source": [
47+
"## Truth value testing\n"
48+
]
49+
},
50+
{
51+
"cell_type": "markdown",
52+
"metadata": {},
53+
"source": [
54+
"Q1. Let x be an arbitrary. Return True if none of the elements of x is zero. Remind that 0 evaluates to False in python.\n"
55+
]
56+
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": 4,
60+
"metadata": {
61+
"collapsed": false
62+
},
63+
"outputs": [
64+
{
65+
"name": "stdout",
66+
"output_type": "stream",
67+
"text": [
68+
"True\n",
69+
"False\n"
70+
]
71+
}
72+
],
73+
"source": [
74+
"x = np.array([1,2,3])\n",
75+
"#\n",
76+
"\n",
77+
"x = np.array([1,0,3])\n",
78+
"#"
79+
]
80+
},
81+
{
82+
"cell_type": "markdown",
83+
"metadata": {},
84+
"source": [
85+
"Q2. Let x be an arbitrary. Return True if any of the elements of x is non-zero."
86+
]
87+
},
88+
{
89+
"cell_type": "code",
90+
"execution_count": 5,
91+
"metadata": {
92+
"collapsed": false
93+
},
94+
"outputs": [
95+
{
96+
"name": "stdout",
97+
"output_type": "stream",
98+
"text": [
99+
"True\n",
100+
"False\n"
101+
]
102+
}
103+
],
104+
"source": [
105+
"x = np.array([1,0,0])\n",
106+
"#\n",
107+
"\n",
108+
"x = np.array([0,0,0])\n",
109+
"#"
110+
]
111+
},
112+
{
113+
"cell_type": "markdown",
114+
"metadata": {},
115+
"source": [
116+
"## Array contents\n"
117+
]
118+
},
119+
{
120+
"cell_type": "markdown",
121+
"metadata": {},
122+
"source": [
123+
"Q3. Predict the result of the following code."
124+
]
125+
},
126+
{
127+
"cell_type": "code",
128+
"execution_count": 8,
129+
"metadata": {
130+
"collapsed": false
131+
},
132+
"outputs": [],
133+
"source": [
134+
"x = np.array([1, 0, np.nan, np.inf])\n",
135+
"#print np.isfinite(x)"
136+
]
137+
},
138+
{
139+
"cell_type": "markdown",
140+
"metadata": {},
141+
"source": [
142+
"Q4. Predict the result of the following code."
143+
]
144+
},
145+
{
146+
"cell_type": "code",
147+
"execution_count": 10,
148+
"metadata": {
149+
"collapsed": false
150+
},
151+
"outputs": [],
152+
"source": [
153+
"x = np.array([1, 0, np.nan, np.inf])\n",
154+
"#print np.isinf(x)"
155+
]
156+
},
157+
{
158+
"cell_type": "markdown",
159+
"metadata": {},
160+
"source": [
161+
"Q5. Predict the result of the following code."
162+
]
163+
},
164+
{
165+
"cell_type": "code",
166+
"execution_count": 12,
167+
"metadata": {
168+
"collapsed": true
169+
},
170+
"outputs": [],
171+
"source": [
172+
"x = np.array([1, 0, np.nan, np.inf])\n",
173+
"#print np.isnan(x)"
174+
]
175+
},
176+
{
177+
"cell_type": "markdown",
178+
"metadata": {},
179+
"source": [
180+
"## Array type testing"
181+
]
182+
},
183+
{
184+
"cell_type": "markdown",
185+
"metadata": {},
186+
"source": [
187+
"Q6. Predict the result of the following code."
188+
]
189+
},
190+
{
191+
"cell_type": "code",
192+
"execution_count": 15,
193+
"metadata": {
194+
"collapsed": false
195+
},
196+
"outputs": [],
197+
"source": [
198+
"x = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j])\n",
199+
"#print np.iscomplex(x)"
200+
]
201+
},
202+
{
203+
"cell_type": "markdown",
204+
"metadata": {},
205+
"source": [
206+
"Q7. Predict the result of the following code."
207+
]
208+
},
209+
{
210+
"cell_type": "code",
211+
"execution_count": 18,
212+
"metadata": {
213+
"collapsed": false
214+
},
215+
"outputs": [],
216+
"source": [
217+
"x = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j])\n",
218+
"#print np.isreal(x)"
219+
]
220+
},
221+
{
222+
"cell_type": "markdown",
223+
"metadata": {},
224+
"source": [
225+
"Q8. Predict the result of the following code."
226+
]
227+
},
228+
{
229+
"cell_type": "code",
230+
"execution_count": 21,
231+
"metadata": {
232+
"collapsed": false
233+
},
234+
"outputs": [],
235+
"source": [
236+
"#print np.isscalar(3)\n",
237+
"#print np.isscalar([3])\n",
238+
"#print np.isscalar(True)"
239+
]
240+
},
241+
{
242+
"cell_type": "markdown",
243+
"metadata": {},
244+
"source": [
245+
"## Logical operations"
246+
]
247+
},
248+
{
249+
"cell_type": "markdown",
250+
"metadata": {},
251+
"source": [
252+
"Q9. Predict the result of the following code."
253+
]
254+
},
255+
{
256+
"cell_type": "code",
257+
"execution_count": 31,
258+
"metadata": {
259+
"collapsed": false
260+
},
261+
"outputs": [],
262+
"source": [
263+
"#print np.logical_and([True, False], [False, False])\n",
264+
"#print np.logical_or([True, False, True], [True, False, False])\n",
265+
"#print np.logical_xor([True, False, True], [True, False, False])\n",
266+
"#print np.logical_not([True, False, 0, 1])\n"
267+
]
268+
},
269+
{
270+
"cell_type": "markdown",
271+
"metadata": {},
272+
"source": [
273+
"## Comparison"
274+
]
275+
},
276+
{
277+
"cell_type": "markdown",
278+
"metadata": {},
279+
"source": [
280+
"Q10. Predict the result of the following code."
281+
]
282+
},
283+
{
284+
"cell_type": "code",
285+
"execution_count": 42,
286+
"metadata": {
287+
"collapsed": false
288+
},
289+
"outputs": [],
290+
"source": [
291+
"#print np.allclose([3], [2.999999])\n",
292+
"#print np.array_equal([3], [2.999999])"
293+
]
294+
},
295+
{
296+
"cell_type": "markdown",
297+
"metadata": {},
298+
"source": [
299+
"Q11. Write numpy comparison functions such that they return the results as you see."
300+
]
301+
},
302+
{
303+
"cell_type": "code",
304+
"execution_count": 51,
305+
"metadata": {
306+
"collapsed": false
307+
},
308+
"outputs": [
309+
{
310+
"name": "stdout",
311+
"output_type": "stream",
312+
"text": [
313+
"[ True False]\n",
314+
"[ True True]\n",
315+
"[False False]\n",
316+
"[False True]\n"
317+
]
318+
}
319+
],
320+
"source": [
321+
"x = np.array([4, 5])\n",
322+
"y = np.array([2, 5])\n",
323+
"#\n",
324+
"#\n",
325+
"#\n",
326+
"#"
327+
]
328+
},
329+
{
330+
"cell_type": "markdown",
331+
"metadata": {},
332+
"source": [
333+
"Q12. Predict the result of the following code."
334+
]
335+
},
336+
{
337+
"cell_type": "code",
338+
"execution_count": 50,
339+
"metadata": {
340+
"collapsed": false
341+
},
342+
"outputs": [],
343+
"source": [
344+
"#print np.equal([1, 2], [1, 2.000001])\n",
345+
"#print np.isclose([1, 2], [1, 2.000001])"
346+
]
347+
},
348+
{
349+
"cell_type": "code",
350+
"execution_count": null,
351+
"metadata": {
352+
"collapsed": true
353+
},
354+
"outputs": [],
355+
"source": []
356+
}
357+
],
358+
"metadata": {
359+
"kernelspec": {
360+
"display_name": "Python 2",
361+
"language": "python",
362+
"name": "python2"
363+
},
364+
"language_info": {
365+
"codemirror_mode": {
366+
"name": "ipython",
367+
"version": 2
368+
},
369+
"file_extension": ".py",
370+
"mimetype": "text/x-python",
371+
"name": "python",
372+
"nbconvert_exporter": "python",
373+
"pygments_lexer": "ipython2",
374+
"version": "2.7.12"
375+
}
376+
},
377+
"nbformat": 4,
378+
"nbformat_minor": 2
379+
}

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /