Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 4efd823

Browse files
style: format code with autopep8
Format code with autopep8 This commit fixes the style issues introduced in cabcd48 according to the output from Autopep8. Details: None
1 parent e5e1241 commit 4efd823

File tree

1 file changed

+29
-17
lines changed
  • Air Quality Index Prediction

1 file changed

+29
-17
lines changed

‎Air Quality Index Prediction/app.py‎

Lines changed: 29 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -51,33 +51,45 @@
5151
y = df.pop("AQI")
5252

5353

54-
x_train, x_test, y_train, y_test = train_test_split(df, y, test_size=0.2, random_state=0)
54+
x_train, x_test, y_train, y_test = train_test_split(
55+
df, y, test_size=0.2, random_state=0)
5556

5657

5758
model = RandomForestRegressor(max_depth=50, random_state=0)
5859
model.fit(x_train, y_train)
5960

61+
6062
def main():
6163
st.title("Air Quality Index Prediction")
6264

6365
st.write("## User Input Features")
6466

65-
6667
city = st.selectbox("City", df["City"].unique())
67-
pm2_5 = st.slider("PM2.5", float(df["PM2.5"].min()), float(df["PM2.5"].max()), float(df["PM2.5"].mean()))
68-
pm10 = st.slider("PM10", float(df["PM10"].min()), float(df["PM10"].max()), float(df["PM10"].mean()))
69-
no = st.slider("NO", float(df["NO"].min()), float(df["NO"].max()), float(df["NO"].mean()))
70-
no2 = st.slider("NO2", float(df["NO2"].min()), float(df["NO2"].max()), float(df["NO2"].mean()))
71-
nox = st.slider("NOx", float(df["NOx"].min()), float(df["NOx"].max()), float(df["NOx"].mean()))
72-
nh3 = st.slider("NH3", float(df["NH3"].min()), float(df["NH3"].max()), float(df["NH3"].mean()))
73-
co = st.slider("CO", float(df["CO"].min()), float(df["CO"].max()), float(df["CO"].mean()))
74-
so2 = st.slider("SO2", float(df["SO2"].min()), float(df["SO2"].max()), float(df["SO2"].mean()))
75-
o3 = st.slider("O3", float(df["O3"].min()), float(df["O3"].max()), float(df["O3"].mean()))
76-
benzene = st.slider("Benzene", float(df["Benzene"].min()), float(df["Benzene"].max()), float(df["Benzene"].mean()))
77-
toluene = st.slider("Toluene", float(df["Toluene"].min()), float(df["Toluene"].max()), float(df["Toluene"].mean()))
78-
xylene = st.slider("Xylene", float(df["Xylene"].min()), float(df["Xylene"].max()), float(df["Xylene"].mean()))
79-
80-
68+
pm2_5 = st.slider("PM2.5", float(df["PM2.5"].min()), float(
69+
df["PM2.5"].max()), float(df["PM2.5"].mean()))
70+
pm10 = st.slider("PM10", float(df["PM10"].min()), float(
71+
df["PM10"].max()), float(df["PM10"].mean()))
72+
no = st.slider("NO", float(df["NO"].min()), float(
73+
df["NO"].max()), float(df["NO"].mean()))
74+
no2 = st.slider("NO2", float(df["NO2"].min()), float(
75+
df["NO2"].max()), float(df["NO2"].mean()))
76+
nox = st.slider("NOx", float(df["NOx"].min()), float(
77+
df["NOx"].max()), float(df["NOx"].mean()))
78+
nh3 = st.slider("NH3", float(df["NH3"].min()), float(
79+
df["NH3"].max()), float(df["NH3"].mean()))
80+
co = st.slider("CO", float(df["CO"].min()), float(
81+
df["CO"].max()), float(df["CO"].mean()))
82+
so2 = st.slider("SO2", float(df["SO2"].min()), float(
83+
df["SO2"].max()), float(df["SO2"].mean()))
84+
o3 = st.slider("O3", float(df["O3"].min()), float(
85+
df["O3"].max()), float(df["O3"].mean()))
86+
benzene = st.slider("Benzene", float(df["Benzene"].min()), float(
87+
df["Benzene"].max()), float(df["Benzene"].mean()))
88+
toluene = st.slider("Toluene", float(df["Toluene"].min()), float(
89+
df["Toluene"].max()), float(df["Toluene"].mean()))
90+
xylene = st.slider("Xylene", float(df["Xylene"].min()), float(
91+
df["Xylene"].max()), float(df["Xylene"].mean()))
92+
8193
input_data = pd.DataFrame(
8294
{
8395
"City": [city],
@@ -98,7 +110,7 @@ def main():
98110

99111
st.sidebar.write("## City Label Mapping")
100112
st.sidebar.write(city_mapping)
101-
113+
102114
prediction = model.predict(input_data)
103115

104116
st.write("## Prediction")

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /