Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 0a2e911

Browse files
2 parents 4b32c7c + b70f532 commit 0a2e911

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

60 files changed

+1165
-0
lines changed

‎README.md‎

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,12 @@
5555
- [第59天:PyQuery 详解](http://www.justdopython.com/2019/10/07/python-spider-PyQuery-059)
5656
- [第 62 天:HTTP 入门]( https://github.com/JustDoPython/python-100-day/tree/master/day-062 )
5757
- [第74天:Python newspaper 框架](http://www.justdopython.com/2019/11/24/python-newspaper-074)
58+
- [第 79 天:数据分析之 Numpy]( https://github.com/JustDoPython/python-100-day/tree/master/day-079 )
5859
- [第92天:Python多线程之 Event 事件](http://www.justdopython.com/2019/11/05/python-event-092)
60+
- [第 94 天:数据可视化之 pandas]( https://github.com/JustDoPython/python-100-day/tree/master/day-094 )
61+
- [第 106 天:机器学习概览]( https://github.com/JustDoPython/python-100-day/tree/master/day-106 )
62+
- [第 112 天:机器学习算法之蒙特卡洛方法]( https://github.com/JustDoPython/python-100-day/tree/master/day-112 )
63+
- [第 117 天:机器学习算法之 K 近邻]( https://github.com/JustDoPython/python-100-day/tree/master/day-117 )
5964

6065
关注公众号:python技术,回复"python"一起学习交流
6166

‎day-079/__init__.py‎

Whitespace-only changes.

‎day-094/__init__.py‎

Whitespace-only changes.

‎day-106/__init__.py‎

Whitespace-only changes.

‎day-112/MonteCarlo.py‎

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
import random
2+
3+
4+
def solve_pi(repeat = 20000) -> float:
5+
'''
6+
:param repeat: integral
7+
8+
:return: float
9+
'''
10+
count = 0
11+
for i in range(repeat):
12+
x = random.random()
13+
y = random.random()
14+
if x*x + y*y < 1.0:
15+
count += 1
16+
17+
ratio = count / repeat
18+
PI = 4 * ratio
19+
return PI
20+
21+
if __name__ == "__main__":
22+
repeat = int(input("请输入实验次数:"))
23+
print(solve_pi(repeat))

‎day-112/MonteCarlo_integral.py‎

Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
import random
2+
3+
4+
def solve_integral(repeat = 20000) -> float:
5+
'''
6+
:param repeat: integral
7+
8+
:return: float
9+
'''
10+
11+
count = 0
12+
for i in range(repeat):
13+
x = random.random()
14+
y = random.random()
15+
if y > x*x:
16+
count += 1
17+
18+
ratio = count / repeat
19+
integral = ratio * 1
20+
return integral
21+
22+
if __name__ == "__main__":
23+
repeat = int(input("请输入实验次数:"))
24+
print(solve_integral(repeat))

‎day-112/__init__.py‎

Whitespace-only changes.

‎day-117/Iris.csv‎

Lines changed: 151 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,151 @@
1+
Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
2+
1,5.1,3.5,1.4,0.2,Iris-setosa
3+
2,4.9,3.0,1.4,0.2,Iris-setosa
4+
3,4.7,3.2,1.3,0.2,Iris-setosa
5+
4,4.6,3.1,1.5,0.2,Iris-setosa
6+
5,5.0,3.6,1.4,0.2,Iris-setosa
7+
6,5.4,3.9,1.7,0.4,Iris-setosa
8+
7,4.6,3.4,1.4,0.3,Iris-setosa
9+
8,5.0,3.4,1.5,0.2,Iris-setosa
10+
9,4.4,2.9,1.4,0.2,Iris-setosa
11+
10,4.9,3.1,1.5,0.1,Iris-setosa
12+
11,5.4,3.7,1.5,0.2,Iris-setosa
13+
12,4.8,3.4,1.6,0.2,Iris-setosa
14+
13,4.8,3.0,1.4,0.1,Iris-setosa
15+
14,4.3,3.0,1.1,0.1,Iris-setosa
16+
15,5.8,4.0,1.2,0.2,Iris-setosa
17+
16,5.7,4.4,1.5,0.4,Iris-setosa
18+
17,5.4,3.9,1.3,0.4,Iris-setosa
19+
18,5.1,3.5,1.4,0.3,Iris-setosa
20+
19,5.7,3.8,1.7,0.3,Iris-setosa
21+
20,5.1,3.8,1.5,0.3,Iris-setosa
22+
21,5.4,3.4,1.7,0.2,Iris-setosa
23+
22,5.1,3.7,1.5,0.4,Iris-setosa
24+
23,4.6,3.6,1.0,0.2,Iris-setosa
25+
24,5.1,3.3,1.7,0.5,Iris-setosa
26+
25,4.8,3.4,1.9,0.2,Iris-setosa
27+
26,5.0,3.0,1.6,0.2,Iris-setosa
28+
27,5.0,3.4,1.6,0.4,Iris-setosa
29+
28,5.2,3.5,1.5,0.2,Iris-setosa
30+
29,5.2,3.4,1.4,0.2,Iris-setosa
31+
30,4.7,3.2,1.6,0.2,Iris-setosa
32+
31,4.8,3.1,1.6,0.2,Iris-setosa
33+
32,5.4,3.4,1.5,0.4,Iris-setosa
34+
33,5.2,4.1,1.5,0.1,Iris-setosa
35+
34,5.5,4.2,1.4,0.2,Iris-setosa
36+
35,4.9,3.1,1.5,0.1,Iris-setosa
37+
36,5.0,3.2,1.2,0.2,Iris-setosa
38+
37,5.5,3.5,1.3,0.2,Iris-setosa
39+
38,4.9,3.1,1.5,0.1,Iris-setosa
40+
39,4.4,3.0,1.3,0.2,Iris-setosa
41+
40,5.1,3.4,1.5,0.2,Iris-setosa
42+
41,5.0,3.5,1.3,0.3,Iris-setosa
43+
42,4.5,2.3,1.3,0.3,Iris-setosa
44+
43,4.4,3.2,1.3,0.2,Iris-setosa
45+
44,5.0,3.5,1.6,0.6,Iris-setosa
46+
45,5.1,3.8,1.9,0.4,Iris-setosa
47+
46,4.8,3.0,1.4,0.3,Iris-setosa
48+
47,5.1,3.8,1.6,0.2,Iris-setosa
49+
48,4.6,3.2,1.4,0.2,Iris-setosa
50+
49,5.3,3.7,1.5,0.2,Iris-setosa
51+
50,5.0,3.3,1.4,0.2,Iris-setosa
52+
51,7.0,3.2,4.7,1.4,Iris-versicolor
53+
52,6.4,3.2,4.5,1.5,Iris-versicolor
54+
53,6.9,3.1,4.9,1.5,Iris-versicolor
55+
54,5.5,2.3,4.0,1.3,Iris-versicolor
56+
55,6.5,2.8,4.6,1.5,Iris-versicolor
57+
56,5.7,2.8,4.5,1.3,Iris-versicolor
58+
57,6.3,3.3,4.7,1.6,Iris-versicolor
59+
58,4.9,2.4,3.3,1.0,Iris-versicolor
60+
59,6.6,2.9,4.6,1.3,Iris-versicolor
61+
60,5.2,2.7,3.9,1.4,Iris-versicolor
62+
61,5.0,2.0,3.5,1.0,Iris-versicolor
63+
62,5.9,3.0,4.2,1.5,Iris-versicolor
64+
63,6.0,2.2,4.0,1.0,Iris-versicolor
65+
64,6.1,2.9,4.7,1.4,Iris-versicolor
66+
65,5.6,2.9,3.6,1.3,Iris-versicolor
67+
66,6.7,3.1,4.4,1.4,Iris-versicolor
68+
67,5.6,3.0,4.5,1.5,Iris-versicolor
69+
68,5.8,2.7,4.1,1.0,Iris-versicolor
70+
69,6.2,2.2,4.5,1.5,Iris-versicolor
71+
70,5.6,2.5,3.9,1.1,Iris-versicolor
72+
71,5.9,3.2,4.8,1.8,Iris-versicolor
73+
72,6.1,2.8,4.0,1.3,Iris-versicolor
74+
73,6.3,2.5,4.9,1.5,Iris-versicolor
75+
74,6.1,2.8,4.7,1.2,Iris-versicolor
76+
75,6.4,2.9,4.3,1.3,Iris-versicolor
77+
76,6.6,3.0,4.4,1.4,Iris-versicolor
78+
77,6.8,2.8,4.8,1.4,Iris-versicolor
79+
78,6.7,3.0,5.0,1.7,Iris-versicolor
80+
79,6.0,2.9,4.5,1.5,Iris-versicolor
81+
80,5.7,2.6,3.5,1.0,Iris-versicolor
82+
81,5.5,2.4,3.8,1.1,Iris-versicolor
83+
82,5.5,2.4,3.7,1.0,Iris-versicolor
84+
83,5.8,2.7,3.9,1.2,Iris-versicolor
85+
84,6.0,2.7,5.1,1.6,Iris-versicolor
86+
85,5.4,3.0,4.5,1.5,Iris-versicolor
87+
86,6.0,3.4,4.5,1.6,Iris-versicolor
88+
87,6.7,3.1,4.7,1.5,Iris-versicolor
89+
88,6.3,2.3,4.4,1.3,Iris-versicolor
90+
89,5.6,3.0,4.1,1.3,Iris-versicolor
91+
90,5.5,2.5,4.0,1.3,Iris-versicolor
92+
91,5.5,2.6,4.4,1.2,Iris-versicolor
93+
92,6.1,3.0,4.6,1.4,Iris-versicolor
94+
93,5.8,2.6,4.0,1.2,Iris-versicolor
95+
94,5.0,2.3,3.3,1.0,Iris-versicolor
96+
95,5.6,2.7,4.2,1.3,Iris-versicolor
97+
96,5.7,3.0,4.2,1.2,Iris-versicolor
98+
97,5.7,2.9,4.2,1.3,Iris-versicolor
99+
98,6.2,2.9,4.3,1.3,Iris-versicolor
100+
99,5.1,2.5,3.0,1.1,Iris-versicolor
101+
100,5.7,2.8,4.1,1.3,Iris-versicolor
102+
101,6.3,3.3,6.0,2.5,Iris-virginica
103+
102,5.8,2.7,5.1,1.9,Iris-virginica
104+
103,7.1,3.0,5.9,2.1,Iris-virginica
105+
104,6.3,2.9,5.6,1.8,Iris-virginica
106+
105,6.5,3.0,5.8,2.2,Iris-virginica
107+
106,7.6,3.0,6.6,2.1,Iris-virginica
108+
107,4.9,2.5,4.5,1.7,Iris-virginica
109+
108,7.3,2.9,6.3,1.8,Iris-virginica
110+
109,6.7,2.5,5.8,1.8,Iris-virginica
111+
110,7.2,3.6,6.1,2.5,Iris-virginica
112+
111,6.5,3.2,5.1,2.0,Iris-virginica
113+
112,6.4,2.7,5.3,1.9,Iris-virginica
114+
113,6.8,3.0,5.5,2.1,Iris-virginica
115+
114,5.7,2.5,5.0,2.0,Iris-virginica
116+
115,5.8,2.8,5.1,2.4,Iris-virginica
117+
116,6.4,3.2,5.3,2.3,Iris-virginica
118+
117,6.5,3.0,5.5,1.8,Iris-virginica
119+
118,7.7,3.8,6.7,2.2,Iris-virginica
120+
119,7.7,2.6,6.9,2.3,Iris-virginica
121+
120,6.0,2.2,5.0,1.5,Iris-virginica
122+
121,6.9,3.2,5.7,2.3,Iris-virginica
123+
122,5.6,2.8,4.9,2.0,Iris-virginica
124+
123,7.7,2.8,6.7,2.0,Iris-virginica
125+
124,6.3,2.7,4.9,1.8,Iris-virginica
126+
125,6.7,3.3,5.7,2.1,Iris-virginica
127+
126,7.2,3.2,6.0,1.8,Iris-virginica
128+
127,6.2,2.8,4.8,1.8,Iris-virginica
129+
128,6.1,3.0,4.9,1.8,Iris-virginica
130+
129,6.4,2.8,5.6,2.1,Iris-virginica
131+
130,7.2,3.0,5.8,1.6,Iris-virginica
132+
131,7.4,2.8,6.1,1.9,Iris-virginica
133+
132,7.9,3.8,6.4,2.0,Iris-virginica
134+
133,6.4,2.8,5.6,2.2,Iris-virginica
135+
134,6.3,2.8,5.1,1.5,Iris-virginica
136+
135,6.1,2.6,5.6,1.4,Iris-virginica
137+
136,7.7,3.0,6.1,2.3,Iris-virginica
138+
137,6.3,3.4,5.6,2.4,Iris-virginica
139+
138,6.4,3.1,5.5,1.8,Iris-virginica
140+
139,6.0,3.0,4.8,1.8,Iris-virginica
141+
140,6.9,3.1,5.4,2.1,Iris-virginica
142+
141,6.7,3.1,5.6,2.4,Iris-virginica
143+
142,6.9,3.1,5.1,2.3,Iris-virginica
144+
143,5.8,2.7,5.1,1.9,Iris-virginica
145+
144,6.8,3.2,5.9,2.3,Iris-virginica
146+
145,6.7,3.3,5.7,2.5,Iris-virginica
147+
146,6.7,3.0,5.2,2.3,Iris-virginica
148+
147,6.3,2.5,5.0,1.9,Iris-virginica
149+
148,6.5,3.0,5.2,2.0,Iris-virginica
150+
149,6.2,3.4,5.4,2.3,Iris-virginica
151+
150,5.9,3.0,5.1,1.8,Iris-virginica

‎day-117/KNN.py‎

Lines changed: 114 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,114 @@
1+
'''
2+
__author__ = justdopython.com
3+
'''
4+
5+
6+
import matplotlib.pyplot as plt
7+
import numpy as np
8+
import pandas as pd
9+
from collections import Counter
10+
11+
12+
# 生成所要用到的数据集
13+
def getData() -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray):
14+
iris = pd.read_csv('iris.csv').to_numpy()
15+
train_data = [] # 训练数据,与测试数据按 4:1 比例划分
16+
test_data = [] # 测试数据
17+
train_target = [] # 训练数据对应标签
18+
test_target = [] # 测试数据对应标签
19+
20+
# 原始数据集分为 3 个类别,分别是 0~49,50~99,100~149,各50个
21+
for i in range(3):
22+
offset = 50 * i
23+
data = iris[offset+0:offset+50, :]
24+
# data = np.random.shuffle(data)
25+
np.random.shuffle(data) # 就地随机打乱
26+
27+
# try:
28+
# train_data.append(data[0:39, 1:5].tolist())
29+
# train_target.append(data[0:39, 5].tolist())
30+
# test_data.append(data[40:, 1:5].tolist())
31+
# test_target.append(data[40:, 5].tolist())
32+
# except NameError:
33+
# train_data = data[0:39, 1:5].tolist()
34+
# train_target = data[0:39, 5].tolist()
35+
# test_data = data[40:, 1:5].tolist()
36+
# test_target = data[40:, 5].tolist()
37+
38+
train_data.extend(data[0:40, 1:5].tolist())
39+
train_target.extend(data[0:40, 5].tolist())
40+
test_data.extend(data[40:, 1:5].tolist())
41+
test_target.extend(data[40:, 5].tolist())
42+
43+
train_data = np.array(train_data)
44+
test_data = np.array(test_data)
45+
train_target = np.array(train_target)
46+
test_target = np.array(test_target)
47+
48+
return train_data, test_data, train_target, test_target
49+
50+
# 计算距离
51+
def calculateDistance(test_data, train_data) -> list:
52+
distance = []
53+
for i in range(len(test_data)):
54+
sub_dist = []
55+
for j in range(len(train_data)):
56+
dif_array = test_data[i] - train_data[j]
57+
dist = np.sqrt(np.sum(dif_array * dif_array))
58+
sub_dist.append(dist)
59+
60+
distance.append(sub_dist)
61+
62+
distance = np.array(distance)
63+
64+
return distance
65+
66+
# 求解结果
67+
def calculateResult(distance, K, train_target):
68+
results = []
69+
70+
for i in range(len(distance)):
71+
index = np.argsort(distance[i])[:K]
72+
result = train_target[index]
73+
74+
# result = pd.value_counts(result)
75+
76+
species = Counter(result).most_common(1)[0][0]
77+
78+
results.append(species)
79+
80+
return results
81+
82+
# 评估结果
83+
def estimateResult(results, test_target):
84+
right = 0
85+
print('-'*80)
86+
87+
for i in range(len(results)):
88+
print('Right Species = ', test_target[i], \
89+
', \tReal Species = ', results[i])
90+
91+
if results[i] == test_target[i]:
92+
right += 1
93+
94+
right_rate = right / len(results)
95+
print('-'*80)
96+
print("Right Rate: ", right_rate)
97+
print('-'*80)
98+
99+
100+
return
101+
102+
if __name__ == '__main__':
103+
print('-'*80)
104+
K = int(input("请输入 K 值:"))
105+
106+
train_data, test_data, train_target, test_target = getData()
107+
distance = calculateDistance(test_data, train_data)
108+
results = calculateResult(distance, K, train_target)
109+
110+
estimateResult(results, test_target)
111+
112+
113+
114+

‎day-117/__init__.py‎

Whitespace-only changes.

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /