|
| 1 | + |
| 2 | + |
| 3 | +# **1174. Immediate Food Delivery II** |
| 4 | + |
| 5 | +## **Problem Statement** |
| 6 | +You are given a table `Delivery` that records food deliveries made to customers. Each row represents an order with the date it was placed and the customer’s preferred delivery date. |
| 7 | + |
| 8 | +--- |
| 9 | + |
| 10 | +## **Delivery Table** |
| 11 | +``` |
| 12 | ++-------------+-------------+------------+-----------------------------+ |
| 13 | +| Column Name | Type | Description | |
| 14 | ++-------------+-------------+----------------------------------------------+ |
| 15 | +| delivery_id | int | Unique identifier for the delivery | |
| 16 | +| customer_id | int | Identifier for the customer | |
| 17 | +| order_date | date | Date when the order was placed | |
| 18 | +| customer_pref_delivery_date | date | Customer’s preferred delivery date | |
| 19 | ++-------------+-------------+----------------------------------------------+ |
| 20 | +``` |
| 21 | +- `delivery_id` is the **primary key**. |
| 22 | +- Each customer specifies a preferred delivery date, which can be the same as or after the order date. |
| 23 | + |
| 24 | +--- |
| 25 | + |
| 26 | +## **Task:** |
| 27 | +Calculate the **percentage** of customers whose **first order** is **immediate** (i.e., the order date is the same as the customer’s preferred delivery date). |
| 28 | +- A customer’s **first order** is defined as the order with the **earliest order_date** for that customer. |
| 29 | +- The result should be **rounded to 2 decimal places**. |
| 30 | +- Return the percentage as `immediate_percentage`. |
| 31 | + |
| 32 | +--- |
| 33 | + |
| 34 | +## **Example 1:** |
| 35 | + |
| 36 | +### **Input:** |
| 37 | +**Delivery Table** |
| 38 | +``` |
| 39 | ++-------------+-------------+------------+-----------------------------+ |
| 40 | +| delivery_id | customer_id | order_date | customer_pref_delivery_date | |
| 41 | ++-------------+-------------+------------+-----------------------------+ |
| 42 | +| 1 | 1 | 2019年08月01日 | 2019年08月02日 | |
| 43 | +| 2 | 2 | 2019年08月02日 | 2019年08月02日 | |
| 44 | +| 3 | 1 | 2019年08月11日 | 2019年08月12日 | |
| 45 | +| 4 | 3 | 2019年08月24日 | 2019年08月24日 | |
| 46 | +| 5 | 3 | 2019年08月21日 | 2019年08月22日 | |
| 47 | +| 6 | 2 | 2019年08月11日 | 2019年08月13日 | |
| 48 | +| 7 | 4 | 2019年08月09日 | 2019年08月09日 | |
| 49 | ++-------------+-------------+------------+-----------------------------+ |
| 50 | +``` |
| 51 | + |
| 52 | +### **Output:** |
| 53 | +``` |
| 54 | ++----------------------+ |
| 55 | +| immediate_percentage | |
| 56 | ++----------------------+ |
| 57 | +| 50.00 | |
| 58 | ++----------------------+ |
| 59 | +``` |
| 60 | + |
| 61 | +### **Explanation:** |
| 62 | +- **Customer 1:** First order is on **2019年08月01日** (preferred: 2019年08月02日) → **Scheduled** |
| 63 | +- **Customer 2:** First order is on **2019年08月02日** (preferred: 2019年08月02日) → **Immediate** |
| 64 | +- **Customer 3:** First order is on **2019年08月21日** (preferred: 2019年08月22日) → **Scheduled** |
| 65 | +- **Customer 4:** First order is on **2019年08月09日** (preferred: 2019年08月09日) → **Immediate** |
| 66 | + |
| 67 | +Out of 4 customers, 2 have immediate first orders. |
| 68 | +Percentage = (2 / 4) * 100 = **50.00** |
| 69 | + |
| 70 | +--- |
| 71 | + |
| 72 | +## **SQL Solutions** |
| 73 | + |
| 74 | +### **1️⃣ Standard MySQL Solution** |
| 75 | +```sql |
| 76 | +SELECT |
| 77 | + ROUND(100 * SUM(CASE |
| 78 | + WHEN first_orders.order_date = first_orders.customer_pref_delivery_date THEN 1 |
| 79 | + ELSE 0 |
| 80 | + END) / COUNT(*), 2) AS immediate_percentage |
| 81 | +FROM ( |
| 82 | + -- Get the first order (earliest order_date) for each customer |
| 83 | + SELECT customer_id, order_date, customer_pref_delivery_date |
| 84 | + FROM Delivery |
| 85 | + WHERE (customer_id, order_date) IN ( |
| 86 | + SELECT customer_id, MIN(order_date) |
| 87 | + FROM Delivery |
| 88 | + GROUP BY customer_id |
| 89 | + ) |
| 90 | +) AS first_orders; |
| 91 | +``` |
| 92 | + |
| 93 | +#### **Explanation:** |
| 94 | +- **Subquery:** Retrieves the first order for each customer by selecting the minimum `order_date`. |
| 95 | +- **Outer Query:** |
| 96 | + - Uses a `CASE` statement to check if the `order_date` equals `customer_pref_delivery_date` (i.e., immediate order). |
| 97 | + - Calculates the percentage of immediate first orders. |
| 98 | + - Rounds the result to 2 decimal places. |
| 99 | + |
| 100 | +--- |
| 101 | + |
| 102 | +### **2️⃣ Window Function (SQL) Solution** |
| 103 | +```sql |
| 104 | +WITH RankedOrders AS ( |
| 105 | + SELECT |
| 106 | + customer_id, |
| 107 | + order_date, |
| 108 | + customer_pref_delivery_date, |
| 109 | + ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY order_date) AS rn |
| 110 | + FROM Delivery |
| 111 | +) |
| 112 | +SELECT |
| 113 | + ROUND(100 * SUM(CASE WHEN order_date = customer_pref_delivery_date THEN 1 ELSE 0 END) / COUNT(*), 2) AS immediate_percentage |
| 114 | +FROM RankedOrders |
| 115 | +WHERE rn = 1; |
| 116 | +``` |
| 117 | + |
| 118 | +#### **Explanation:** |
| 119 | +- **CTE `RankedOrders`:** |
| 120 | + - Uses `ROW_NUMBER()` to rank orders for each customer by `order_date`. |
| 121 | + - Filters for the first order of each customer (`rn = 1`). |
| 122 | +- **Final SELECT:** |
| 123 | + - Computes the percentage of first orders that are immediate. |
| 124 | + - Rounds the result to 2 decimal places. |
| 125 | + |
| 126 | +--- |
| 127 | + |
| 128 | +## **Pandas Solution (Python)** |
| 129 | +```python |
| 130 | +import pandas as pd |
| 131 | + |
| 132 | +def immediate_food_delivery_percentage(delivery: pd.DataFrame) -> pd.DataFrame: |
| 133 | + # Ensure order_date and customer_pref_delivery_date are in datetime format |
| 134 | + delivery['order_date'] = pd.to_datetime(delivery['order_date']) |
| 135 | + delivery['customer_pref_delivery_date'] = pd.to_datetime(delivery['customer_pref_delivery_date']) |
| 136 | + |
| 137 | + # Get the first order date for each customer |
| 138 | + first_order = delivery.groupby('customer_id')['order_date'].min().reset_index() |
| 139 | + first_order = first_order.rename(columns={'order_date': 'first_order_date'}) |
| 140 | + |
| 141 | + # Merge to get the corresponding preferred delivery date for the first order |
| 142 | + merged = pd.merge(delivery, first_order, on='customer_id', how='inner') |
| 143 | + first_orders = merged[merged['order_date'] == merged['first_order_date']] |
| 144 | + |
| 145 | + # Calculate immediate orders |
| 146 | + immediate_count = (first_orders['order_date'] == first_orders['customer_pref_delivery_date']).sum() |
| 147 | + total_customers = first_orders['customer_id'].nunique() |
| 148 | + immediate_percentage = round(100 * immediate_count / total_customers, 2) |
| 149 | + |
| 150 | + return pd.DataFrame({'immediate_percentage': [immediate_percentage]}) |
| 151 | + |
| 152 | +# Example usage: |
| 153 | +# df = pd.read_csv('delivery.csv') |
| 154 | +# print(immediate_food_delivery_percentage(df)) |
| 155 | +``` |
| 156 | + |
| 157 | +#### **Explanation:** |
| 158 | +- **Convert Dates:** |
| 159 | + - Convert `order_date` and `customer_pref_delivery_date` to datetime for accurate comparison. |
| 160 | +- **Determine First Order:** |
| 161 | + - Group by `customer_id` to find the minimum `order_date` as the first order. |
| 162 | + - Merge with the original DataFrame to obtain details of the first order. |
| 163 | +- **Calculate Percentage:** |
| 164 | + - Count how many first orders are immediate (where `order_date` equals `customer_pref_delivery_date`). |
| 165 | + - Compute the percentage and round to 2 decimal places. |
| 166 | + |
| 167 | +--- |
| 168 | + |
| 169 | +## **File Structure** |
| 170 | +``` |
| 171 | +LeetCode1174/ |
| 172 | +├── problem_statement.md # Contains the problem description and constraints. |
| 173 | +├── sql_standard_solution.sql # Contains the Standard MySQL solution. |
| 174 | +├── sql_window_solution.sql # Contains the Window Function solution. |
| 175 | +├── pandas_solution.py # Contains the Pandas solution. |
| 176 | +├── README.md # Overview of the problem and available solutions. |
| 177 | +``` |
| 178 | + |
| 179 | +--- |
| 180 | + |
| 181 | +## **Useful Links** |
| 182 | +- [LeetCode Problem 1174](https://leetcode.com/problems/immediate-food-delivery-ii/) |
| 183 | +- [SQL GROUP BY Documentation](https://www.w3schools.com/sql/sql_groupby.asp) |
| 184 | +- [SQL Window Functions](https://www.w3schools.com/sql/sql_window.asp) |
| 185 | +- [Pandas GroupBy Documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html) |
| 186 | +- [Pandas Merge Documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html) |
0 commit comments