|
| 1 | +Here's a structured `README.md` file for **LeetCode 1211 - Queries Quality and Percentage**, formatted for a GitHub repository: |
| 2 | + |
| 3 | +```md |
| 4 | +# 📊 Queries Quality and Percentage - LeetCode 1211 |
| 5 | + |
| 6 | +## 📌 Problem Statement |
| 7 | +You are given the **Queries** table, which contains information collected from various queries on a database. |
| 8 | + |
| 9 | +### Queries Table |
| 10 | +| Column Name | Type | |
| 11 | +| ----------- | ------- | |
| 12 | +| query_name | varchar | |
| 13 | +| result | varchar | |
| 14 | +| position | int | |
| 15 | +| rating | int | |
| 16 | + |
| 17 | +- The **position** column has values from **1 to 500**. |
| 18 | +- The **rating** column has values from **1 to 5**. |
| 19 | +- **Queries with rating < 3 are considered "poor queries".** |
| 20 | + |
| 21 | +### Definitions: |
| 22 | +1️⃣ **Query Quality:** |
| 23 | + The **average** of the **ratio** between query rating and its position: |
| 24 | + \[ |
| 25 | + \text{quality} = \frac{\sum (\text{rating} / \text{position})}{\text{total queries for that name}} |
| 26 | + \] |
| 27 | + |
| 28 | +2️⃣ **Poor Query Percentage:** |
| 29 | + The percentage of all queries where **rating < 3**: |
| 30 | + \[ |
| 31 | + \text{poor\_query\_percentage} = \left(\frac{\text{count of poor queries}}{\text{total queries}}\right) \times 100 |
| 32 | + \] |
| 33 | + |
| 34 | +--- |
| 35 | + |
| 36 | +## 📊 Example 1: |
| 37 | +### Input: |
| 38 | +**Queries Table** |
| 39 | +| query_name | result | position | rating | |
| 40 | +| ---------- | ---------------- | -------- | ------ | |
| 41 | +| Dog | Golden Retriever | 1 | 5 | |
| 42 | +| Dog | German Shepherd | 2 | 5 | |
| 43 | +| Dog | Mule | 200 | 1 | |
| 44 | +| Cat | Shirazi | 5 | 2 | |
| 45 | +| Cat | Siamese | 3 | 3 | |
| 46 | +| Cat | Sphynx | 7 | 4 | |
| 47 | + |
| 48 | +### Output: |
| 49 | +| query_name | quality | poor_query_percentage | |
| 50 | +| ---------- | ------- | --------------------- | |
| 51 | +| Dog | 2.50 | 33.33 | |
| 52 | +| Cat | 0.66 | 33.33 | |
| 53 | + |
| 54 | +### Explanation: |
| 55 | +#### **Dog** |
| 56 | +- **Quality Calculation:** |
| 57 | + \[ |
| 58 | + \left( \frac{5}{1} + \frac{5}{2} + \frac{1}{200} \right) \div 3 = 2.50 |
| 59 | + \] |
| 60 | +- **Poor Query Percentage:** |
| 61 | + - Poor Queries: **1** (Mule, rating = 1) |
| 62 | + - Total Queries: **3** |
| 63 | + \[ |
| 64 | + (1 / 3) \times 100 = 33.33\% |
| 65 | + \] |
| 66 | + |
| 67 | +#### **Cat** |
| 68 | +- **Quality Calculation:** |
| 69 | + \[ |
| 70 | + \left( \frac{2}{5} + \frac{3}{3} + \frac{4}{7} \right) \div 3 = 0.66 |
| 71 | + \] |
| 72 | +- **Poor Query Percentage:** |
| 73 | + - Poor Queries: **1** (Shirazi, rating = 2) |
| 74 | + - Total Queries: **3** |
| 75 | + \[ |
| 76 | + (1 / 3) \times 100 = 33.33\% |
| 77 | + \] |
| 78 | + |
| 79 | +--- |
| 80 | + |
| 81 | +## 🖥 SQL Solution |
| 82 | + |
| 83 | +### 1️⃣ Standard MySQL Query |
| 84 | +#### Explanation: |
| 85 | +- **Calculate quality** using `AVG(rating / position)`. |
| 86 | +- **Count poor queries** using `SUM(CASE WHEN rating < 3 THEN 1 ELSE 0 END)`. |
| 87 | +- **Calculate percentage** using `(COUNT of poor queries / total queries) * 100`. |
| 88 | + |
| 89 | +```sql |
| 90 | +SELECT query_name, |
| 91 | + ROUND(AVG(rating * 1.0 / position), 2) AS quality, |
| 92 | + ROUND(SUM(CASE WHEN rating < 3 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) AS poor_query_percentage |
| 93 | +FROM Queries |
| 94 | +GROUP BY query_name; |
| 95 | +``` |
| 96 | + |
| 97 | +--- |
| 98 | + |
| 99 | +### 📝 Step-by-Step Breakdown: |
| 100 | + |
| 101 | +1️⃣ **Grouping Queries by `query_name`** |
| 102 | +```sql |
| 103 | +GROUP BY query_name; |
| 104 | +``` |
| 105 | +- Ensures calculations are **per query type**. |
| 106 | + |
| 107 | +2️⃣ **Calculating Query Quality** |
| 108 | +```sql |
| 109 | +ROUND(AVG(rating * 1.0 / position), 2) AS quality |
| 110 | +``` |
| 111 | +- **`rating / position`** calculates the ratio. |
| 112 | +- **`AVG(...)`** finds the average across all entries for the query. |
| 113 | +- **Multiplying by `1.0` ensures floating-point division.** |
| 114 | +- **`ROUND(..., 2)` rounds to 2 decimal places**. |
| 115 | + |
| 116 | +3️⃣ **Calculating Poor Query Percentage** |
| 117 | +```sql |
| 118 | +ROUND(SUM(CASE WHEN rating < 3 THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) AS poor_query_percentage |
| 119 | +``` |
| 120 | +- **Counts queries with `rating < 3` using `SUM(CASE WHEN ... THEN 1 ELSE 0 END)`**. |
| 121 | +- **Divides by total queries (`COUNT(*)`) and multiplies by `100`**. |
| 122 | +- **Rounds to 2 decimal places**. |
| 123 | + |
| 124 | +--- |
| 125 | + |
| 126 | +### 2️⃣ Alternative MySQL Query (Using `IF` Instead of `CASE`) |
| 127 | + |
| 128 | +```sql |
| 129 | +SELECT query_name, |
| 130 | + ROUND(AVG(rating * 1.0 / position), 2) AS quality, |
| 131 | + ROUND(SUM(IF(rating < 3, 1, 0)) * 100.0 / COUNT(*), 2) AS poor_query_percentage |
| 132 | +FROM Queries |
| 133 | +GROUP BY query_name; |
| 134 | +``` |
| 135 | +- **`IF(rating < 3, 1, 0)`** is equivalent to `CASE WHEN rating < 3 THEN 1 ELSE 0 END`. |
| 136 | + |
| 137 | +--- |
| 138 | + |
| 139 | +## 🐍 Pandas Solution (Python) |
| 140 | +#### Explanation: |
| 141 | +- **Group by `query_name`**. |
| 142 | +- **Calculate query quality** as `rating / position`, then average. |
| 143 | +- **Filter poor queries (`rating < 3`) and compute percentage**. |
| 144 | + |
| 145 | +```python |
| 146 | +import pandas as pd |
| 147 | + |
| 148 | +def queries_quality(queries: pd.DataFrame) -> pd.DataFrame: |
| 149 | + # Group by query_name |
| 150 | + grouped = queries.groupby("query_name") |
| 151 | + |
| 152 | + # Compute Quality |
| 153 | + quality = grouped.apply(lambda x: round((x["rating"] / x["position"]).mean(), 2)) |
| 154 | + |
| 155 | + # Compute Poor Query Percentage |
| 156 | + poor_query_percentage = grouped.apply(lambda x: round((x["rating"] < 3).mean() * 100, 2)) |
| 157 | + |
| 158 | + # Return result |
| 159 | + result = pd.DataFrame({"query_name": quality.index, |
| 160 | + "quality": quality.values, |
| 161 | + "poor_query_percentage": poor_query_percentage.values}) |
| 162 | + return result |
| 163 | +``` |
| 164 | + |
| 165 | +--- |
| 166 | + |
| 167 | +## 📁 File Structure |
| 168 | +``` |
| 169 | +📂 Queries-Quality |
| 170 | +│── 📜 README.md |
| 171 | +│── 📜 solution.sql |
| 172 | +│── 📜 solution_pandas.py |
| 173 | +│── 📜 test_cases.sql |
| 174 | +``` |
| 175 | + |
| 176 | +--- |
| 177 | + |
| 178 | +## 🔗 Useful Links |
| 179 | +- 📖 [LeetCode Problem](https://leetcode.com/problems/queries-quality-and-percentage/) |
| 180 | +- 📚 [SQL `GROUP BY` Documentation](https://www.w3schools.com/sql/sql_groupby.asp) |
| 181 | +- 🐍 [Pandas GroupBy Documentation](https://pandas.pydata.org/docs/reference/groupby.html) |
| 182 | +``` |
| 183 | + |
| 184 | +### Features of this `README.md`: |
| 185 | +✅ **Clear problem statement with table structure** |
| 186 | +✅ **Examples with detailed calculations** |
| 187 | +✅ **SQL and Pandas solutions with explanations** |
| 188 | +✅ **Alternative SQL query for flexibility** |
| 189 | +✅ **File structure for GitHub organization** |
| 190 | +✅ **Useful reference links** |
| 191 | + |
| 192 | +Let me know if you'd like any modifications! 🚀 |
0 commit comments