Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 665f27b

Browse files
committed
add sample benchmark results
1 parent 862e013 commit 665f27b

File tree

1 file changed

+56
-1
lines changed

1 file changed

+56
-1
lines changed

‎README.md

Lines changed: 56 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,62 @@ The original Caffe implementation can be found here : [Original Caffe implementa
4242

4343
SimpleNet performs very decently, it outperforms VGGNet, variants of ResNet and MobileNets(1-3)
4444
and its pretty fast as well! and its all using plain old CNN!.
45-
For benchmark results [look here](https://github.com/Coderx7/SimpleNet_Pytorch/tree/master/ImageNet/training_scripts/imagenet_training/results)
45+
46+
Here's an example of benchmark run on small variants of simplenet and some other known architectures such as mobilenets.
47+
Small variants of simplenet consistently achieve high performance/accuracy:
48+
49+
| model | samples_per_sec | param_count | top1 | top5 |
50+
|:----------------------------------| :--------------: | :-----------: | :--: | :---: |
51+
|mobilenetv3_small_050 | 3035.37 | 1.59 | 57.89 | 80.194 |
52+
|**simplenetv1_small_m1_05** | 2839.35 | 1.51 | **60.89**|**82.978**|
53+
|lcnet_050 | 2683.57 | 1.88 | 63.1 | 84.382 |
54+
|**simplenetv1_small_m2_05** | 2340.51 | 1.51 |**61.524**|**83.432**|
55+
|mobilenetv3_small_075 | 1781.14 | 2.04 | 65.242 | 85.438 |
56+
|tf_mobilenetv3_small_075 | 1674.31 | 2.04 | 65.714 | 86.134 |
57+
|**simplenetv1_small_m1_075** | 1524.64 | 3.29 |**67.764**|**87.66** |
58+
|tf_mobilenetv3_small_minimal_100 | 1308.27 | 2.04 | 62.908 | 84.234 |
59+
|**simplenetv1_small_m2_075** | 1264.33 | 3.29 |**68.15** |**87.762**|
60+
|mobilenetv3_small_100 | 1263.23 | 2.54 | 67.656 | 87.634 |
61+
|tf_mobilenetv3_small_100 | 1220.08 | 2.54 | 67.924 | 87.664 |
62+
|mnasnet_small | 1085.15 | 2.03 | 66.206 | 86.508 |
63+
|mobilenetv2_050 | 848.38 | 1.97 | 65.942 | 86.082 |
64+
|dla46_c | 531.0 | 1.3 | 64.866 | 86.294 |
65+
|dla46x_c | 318.32 | 1.07 | 65.97 | 86.98 |
66+
|dla60x_c | 298.59 | 1.32 | 67.892 | 88.426 |
67+
68+
and this is a sample for larger models: simplenet variants outperform many newer architecures.
69+
70+
| model | samples_per_sec | param_count | top1 | top5 |
71+
|:----------------------------------| :--------------: | :-----------: | :--: | :---: |
72+
| vit_tiny_r_s16_p8_224 | 1882.23 | 6.34 | 71.792 | 90.822 |
73+
| simplenetv1_small_m1_075 | 1516.74 | 3.29 | 67.764 | 87.660 |
74+
| simplenetv1_small_m2_075 | 1260.89 | 3.29 | 68.150 | 87.762 |
75+
| simplenetv1_5m_m1 | 1107.70 | 5.75 | 71.370 | 90.100 |
76+
| deit_tiny_patch16_224 | 991.41 | 5.72 | 72.172 | 91.114 |
77+
| resnet18 | 876.92 | 11.69 | 69.744 | 89.082 |
78+
| simplenetv1_5m_m2 | 835.17 | 5.75 | 71.936 | 90.300 |
79+
| crossvit_9_240 | 602.13 | 8.55 | 73.960 | 91.968 |
80+
| vit_base_patch32_224_sam | 571.37 | 88.22 | 73.694 | 91.010 |
81+
| tinynet_b | 530.15 | 3.73 | 74.976 | 92.184 |
82+
| resnet26 | 524.36 | 16.00 | 75.300 | 92.578 |
83+
| tf_mobilenetv3_large_075 | 505.13 | 3.99 | 73.436 | 91.344 |
84+
| resnet34 | 491.96 | 21.80 | 75.114 | 92.284 |
85+
| regnetx_006 | 478.41 | 6.20 | 73.860 | 91.672 |
86+
| dla34 | 472.49 | 15.74 | 74.620 | 92.072 |
87+
| simplenetv1_9m_m1 | 459.21 | 9.51 | 73.376 | 91.048 |
88+
| repvgg_b0 | 455.36 | 15.82 | 75.160 | 92.418 |
89+
| ghostnet_100 | 407.03 | 5.18 | 73.974 | 91.460 |
90+
| tf_mobilenetv3_large_minimal_100 | 406.84 | 3.92 | 72.250 | 90.630 |
91+
| mobilenetv3_large_100 | 402.08 | 5.48 | 75.766 | 92.544 |
92+
| simplenetv1_9m_m2 | 389.94 | 9.51 | 74.170 | 91.614 |
93+
| tf_mobilenetv3_large_100 | 388.30 | 5.48 | 75.518 | 92.604 |
94+
| mobilenetv2_100 | 295.68 | 3.50 | 72.970 | 91.020 |
95+
| densenet121 | 293.94 | 7.98 | 75.584 | 92.652 |
96+
| mnasnet_100 | 262.25 | 4.38 | 74.658 | 92.112 |
97+
98+
99+
Benchmark was done using a GTX1080 on Pytorch 1.11 with fp32, nhwc, batchsize of 256, input size = `224x224x3`.
100+
For all benchmark results [look here](https://github.com/Coderx7/SimpleNet_Pytorch/tree/master/ImageNet/training_scripts/imagenet_training/results)
46101

47102
-- The models pretrained weights (pytorch, onnx, jit) can be found in [Release section](https://github.com/Coderx7/SimpleNet_Pytorch/releases)
48103

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /