@@ -94,7 +94,17 @@ and this is a sample for larger models: simplenet variants outperform many newer
94
94
| mobilenetv2_100 | 295.68 | 3.50 | 72.970 | 91.020 |
95
95
| densenet121 | 293.94 | 7.98 | 75.584 | 92.652 |
96
96
| mnasnet_100 | 262.25 | 4.38 | 74.658 | 92.112 |
97
-
97
+ | vgg11 | 260.38 | 132.86 | 69.028 | 88.626 |
98
+ | vgg11_bn | 248.92 | 132.87 | 70.360 | 89.802 |
99
+ | mobilenetv2_110d | 230.80 | 4.52 | 75.038 | 92.184 |
100
+ | efficientnet_lite0 | 224.81 | 4.65 | 75.476 | 92.512 |
101
+ | tf_efficientnet_lite0 | 219.93 | 4.65 | 74.832 | 92.174 |
102
+ | vgg13 | 154.03 | 133.05 | 69.926 | 89.246 |
103
+ | vgg13_bn | 144.39 | 133.05 | 71.594 | 90.376 |
104
+ | vgg16 | 123.70 | 138.36 | 71.590 | 90.382 |
105
+ | vgg16_bn | 117.06 | 138.37 | 73.350 | 91.504 |
106
+ | vgg19 | 103.71 | 143.67 | 72.366 | 90.870 |
107
+ | vgg19_bn | 98.59 | 143.68 | 74.214 | 91.848 |
98
108
99
109
Benchmark was done using a GTX1080 on Pytorch 1.11 with fp32, nhwc, batchsize of 256, input size = ` 224x224x3 ` .
100
110
For all benchmark results [ look here] ( https://github.com/Coderx7/SimpleNet_Pytorch/tree/master/ImageNet/training_scripts/imagenet_training/results )
0 commit comments