Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 1ae563a

Browse files
committed
simple numpy
1 parent 3751f0b commit 1ae563a

File tree

2 files changed

+40
-0
lines changed

2 files changed

+40
-0
lines changed

‎taiyangxue/README.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,8 @@
55
- [pythonexcel](https://github.com/JustDoPython/python-examples/tree/master/taiyangxue/pythonxlsx) :Excel 神器 OpenPyXl
66
- [recursion](https://github.com/JustDoPython/python-examples/tree/master/taiyangxue/recursion) :不会编程的程序员不用懂递归
77
- [busclock](https://github.com/JustDoPython/python-examples/tree/master/taiyangxue/busclock) : 公交闹钟 ———— 再也不用白等车了
8+
- [diffusionsimulator](https://github.com/JustDoPython/python-examples/tree/master/taiyangxue/diffusionsimulator) : python 告诉你疫情多可怕
9+
- [simplenumpy](https://github.com/JustDoPython/python-examples/tree/master/taiyangxue/simplenumpy) : 干掉公式 —— numpy 就要这样学
810

911
---
1012

‎taiyangxue/simplenumpy/app.py

Lines changed: 38 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
import numpy as np
2+
3+
m = np.array([(1,2,3),(2,3,4),(3,4,5)])
4+
5+
print(m**2)
6+
7+
n = np.array([(1,2),(2,3),(3,4)])
8+
9+
print(m.dot(n))
10+
11+
12+
# 求和
13+
print(m.sum())
14+
# 连乘
15+
print(m.prod())
16+
17+
# 均值
18+
19+
x = np.array([1,2,3,4,5,6,7,8])
20+
21+
print((1/x.size)*x.sum())
22+
print(x.sum()/x.size)
23+
24+
# 实现 Frobenius 范数
25+
print(np.sqrt((m**2).sum()))
26+
27+
# 样本方差
28+
print(np.sqrt(((x-(x.sum()/x.size))**2).sum()/(x.size-1)))
29+
print(np.sqrt(((x-np.mean(x))**2).sum()/(x.size-1)))
30+
# 标准差
31+
print(np.sqrt(((x-np.mean(x))**2).sum()/x.size))
32+
print(np.std(x))
33+
34+
# 欧拉距离
35+
a = np.array([1,2,3,4,5,6])
36+
b = np.array([2,3,4,5,6,7])
37+
print(np.sqrt(((a-b)**2).sum()))
38+
print(np.linalg.norm(a-b))

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /