Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit eeffbc5

Browse files
Update README.md
1 parent 4d02349 commit eeffbc5

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

‎scikit-learn/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,10 +7,10 @@ The folders included demo programs for leverage scikit-learn library to solve ta
77
|Algorithm|Description|Link|
88
|------|------|--------|
99
|Linear regression|Linear regression is a linear modeling to describe the relation between a scalar dependent variable y and one or more independent variables, X.|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/LinearRegression/sklearn-LinearRegression.py)|
10-
|Logistic regression|Aka logit regression. It is different to regression analysis. A linear probability classifier model to categorize random variable Y being 0 or 1 by given experiment data. Assumes each of categorize are independent and irrelevant alternatives. The model p(y=1\|x, b, w) = sigmoid(g(x)) where g(x)=b+wTx. The sigmoid function = 1/1+e^(-a) where a = g(x).|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/LogisticRegression/logistic_regression.py)|
10+
|Logistic regression|logit regression. It is different to regression analysis. A linear probability classifier model to categorize random variable Y being 0 or 1 by given experiment data. Assumes each of categorize are independent and irrelevant alternatives. The model p(y=1\|x, b, w) = sigmoid(g(x)) where g(x)=b+wTx. The sigmoid function = 1/1+e^(-a) where a = g(x).|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/LogisticRegression/logistic_regression.py)|
1111
|Gaussian Mixture Models (GMMs)|GMMs are among the most statistically mature methods for data clustering (and density estimation). It assumes each component generates data from a Gaussian distribution.|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/KMean_GMM/k-means_EM-GMM.py)|
1212
|K-Means|One of most famous and easy to understand clustering algorithm|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/KMean_GMM/k-means_EM-GMM.py)|
13-
|PLA| Aka Perceptron Learning Algorithm. A solver for binary classification task. |[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/PLA/sklearn-Perceptron.py)|
13+
|PLA|Perceptron Learning Algorithm. A solver for binary classification task. |[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/PLA/sklearn-Perceptron.py)|
1414

1515

1616

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /