|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "markdown",
|
5 | | - "metadata": { |
6 | | - "deletable": true, |
7 | | - "editable": true |
8 | | - }, |
| 5 | + "metadata": {}, |
9 | 6 | "source": [
|
10 | 7 | "# Ch `02`: Concept `08`"
|
11 | 8 | ]
|
12 | 9 | },
|
13 | 10 | {
|
14 | 11 | "cell_type": "markdown",
|
15 | | - "metadata": { |
16 | | - "deletable": true, |
17 | | - "editable": true |
18 | | - }, |
| 12 | + "metadata": {}, |
19 | 13 | "source": [
|
20 | 14 | "## Using TensorBoard"
|
21 | 15 | ]
|
22 | 16 | },
|
23 | 17 | {
|
24 | 18 | "cell_type": "markdown",
|
25 | | - "metadata": { |
26 | | - "deletable": true, |
27 | | - "editable": true |
28 | | - }, |
| 19 | + "metadata": {}, |
29 | 20 | "source": [
|
30 | 21 | "TensorBoard is a great way to visualize what's happening behind the code. \n",
|
31 | 22 | "\n",
|
|
37 | 28 | {
|
38 | 29 | "cell_type": "code",
|
39 | 30 | "execution_count": 1,
|
40 | | - "metadata": { |
41 | | - "collapsed": false, |
42 | | - "deletable": true, |
43 | | - "editable": true |
44 | | - }, |
| 31 | + "metadata": {}, |
45 | 32 | "outputs": [],
|
46 | 33 | "source": [
|
47 | 34 | "import tensorflow as tf\n",
|
|
52 | 39 | },
|
53 | 40 | {
|
54 | 41 | "cell_type": "markdown",
|
55 | | - "metadata": { |
56 | | - "deletable": true, |
57 | | - "editable": true |
58 | | - }, |
| 42 | + "metadata": {}, |
59 | 43 | "source": [
|
60 | 44 | "The moving average is defined as follows:"
|
61 | 45 | ]
|
62 | 46 | },
|
63 | 47 | {
|
64 | 48 | "cell_type": "code",
|
65 | 49 | "execution_count": 2,
|
66 | | - "metadata": { |
67 | | - "collapsed": true, |
68 | | - "deletable": true, |
69 | | - "editable": true |
70 | | - }, |
| 50 | + "metadata": {}, |
71 | 51 | "outputs": [],
|
72 | 52 | "source": [
|
73 | 53 | "alpha = tf.constant(0.05)\n",
|
|
79 | 59 | },
|
80 | 60 | {
|
81 | 61 | "cell_type": "markdown",
|
82 | | - "metadata": { |
83 | | - "deletable": true, |
84 | | - "editable": true |
85 | | - }, |
| 62 | + "metadata": {}, |
86 | 63 | "source": [
|
87 | 64 | "Here's what we care to visualize:"
|
88 | 65 | ]
|
89 | 66 | },
|
90 | 67 | {
|
91 | 68 | "cell_type": "code",
|
92 | 69 | "execution_count": 3,
|
93 | | - "metadata": { |
94 | | - "collapsed": false, |
95 | | - "deletable": true, |
96 | | - "editable": true |
97 | | - }, |
| 70 | + "metadata": {}, |
98 | 71 | "outputs": [],
|
99 | 72 | "source": [
|
100 | 73 | "avg_hist = tf.summary.scalar(\"running_average\", update_avg)\n",
|
|
106 | 79 | },
|
107 | 80 | {
|
108 | 81 | "cell_type": "markdown",
|
109 | | - "metadata": { |
110 | | - "deletable": true, |
111 | | - "editable": true |
112 | | - }, |
| 82 | + "metadata": {}, |
113 | 83 | "source": [
|
114 | 84 | "Time to compute the moving averages. We'll also run the `merged` op to track how the values change:"
|
115 | 85 | ]
|
116 | 86 | },
|
117 | 87 | {
|
118 | 88 | "cell_type": "code",
|
119 | 89 | "execution_count": 4,
|
120 | | - "metadata": { |
121 | | - "collapsed": false, |
122 | | - "deletable": true, |
123 | | - "editable": true |
124 | | - }, |
| 90 | + "metadata": {}, |
125 | 91 | "outputs": [
|
126 | 92 | {
|
127 | 93 | "name": "stdout",
|
128 | 94 | "output_type": "stream",
|
129 | 95 | "text": [
|
130 | | - "10.7201648998 0.536008\n", |
131 | | - "8.48030241652 0.933223\n", |
132 | | - "8.30247090956 1.30169\n", |
133 | | - "9.24097542488 1.69865\n", |
134 | | - "10.2088633934 2.12416\n", |
135 | | - "10.3614895822 2.53603\n", |
136 | | - "9.37371628589 2.87791\n", |
137 | | - "10.9862606878 3.28333\n", |
138 | | - "10.9225657991 3.66529\n", |
139 | | - "10.4472644201 4.00439\n", |
140 | | - "9.99326579845 4.30383\n", |
141 | | - "9.57330486057 4.56731\n", |
142 | | - "9.45675635064 4.81178\n", |
143 | | - "9.9941788904 5.0709\n", |
144 | | - "9.09836853805 5.27227\n", |
145 | | - "12.0245321032 5.60989\n", |
146 | | - "10.2562304744 5.8422\n", |
147 | | - "10.1191878763 6.05605\n", |
148 | | - "8.70716447101 6.18861\n", |
149 | | - "8.90712163427 6.32453\n", |
150 | | - "10.5681769153 6.53672\n", |
151 | | - "10.9797007819 6.75886\n", |
152 | | - "10.6030210585 6.95107\n", |
153 | | - "10.9491388896 7.15098\n", |
154 | | - "11.6004465495 7.37345\n", |
155 | | - "8.91282749896 7.45042\n", |
156 | | - "10.763125555 7.61605\n", |
157 | | - "9.41257928138 7.70588\n", |
158 | | - "9.79326530865 7.81025\n", |
159 | | - "9.44668651831 7.89207\n", |
160 | | - "9.51611890893 7.97327\n", |
161 | | - "10.4691714006 8.09807\n", |
162 | | - "9.91965385005 8.18915\n", |
163 | | - "11.2162023225 8.3405\n", |
164 | | - "9.63270946431 8.40511\n", |
165 | | - "9.0511922839 8.43742\n", |
166 | | - "7.42832296956 8.38696\n", |
167 | | - "9.6116479518 8.44819\n", |
168 | | - "9.43684146689 8.49763\n", |
169 | | - "10.7361498484 8.60955\n", |
170 | | - "8.78547061442 8.61835\n", |
171 | | - "10.4454290488 8.7097\n", |
172 | | - "10.3123350408 8.78983\n", |
173 | | - "12.0810408439 8.95439\n", |
174 | | - "10.8530456005 9.04932\n", |
175 | | - "9.49097084294 9.07141\n", |
176 | | - "10.0076869787 9.11822\n", |
177 | | - "10.2599465527 9.17531\n", |
178 | | - "9.35027184761 9.18406\n", |
179 | | - "10.3080742794 9.24026\n", |
180 | | - "8.35716043518 9.1961\n", |
181 | | - "10.7478332848 9.27369\n", |
182 | | - "11.3755526586 9.37878\n", |
183 | | - "9.96163924982 9.40793\n", |
184 | | - "10.2307646228 9.44907\n", |
185 | | - "9.40638656004 9.44693\n", |
186 | | - "9.2572957088 9.43745\n", |
187 | | - "10.4661914119 9.48889\n", |
188 | | - "9.53670903581 9.49128\n", |
189 | | - "12.8818178743 9.66081\n", |
190 | | - "8.48437820968 9.60198\n", |
191 | | - "9.91886957958 9.61783\n", |
192 | | - "11.016601438 9.68777\n", |
193 | | - "11.209783608 9.76387\n", |
194 | | - "10.4102438984 9.79619\n", |
195 | | - "11.421204522 9.87744\n", |
196 | | - "8.37095962514 9.80211\n", |
197 | | - "10.8108074925 9.85255\n", |
198 | | - "11.1384575597 9.91685\n", |
199 | | - "11.1040471909 9.97621\n", |
200 | | - "11.400325371 10.0474\n", |
201 | | - "9.31651788534 10.0109\n", |
202 | | - "9.43111069234 9.98188\n", |
203 | | - "10.6546148549 10.0155\n", |
204 | | - "12.9366576045 10.1616\n", |
205 | | - "8.51586473864 10.0793\n", |
206 | | - "10.6277159529 10.1067\n", |
207 | | - "10.8474604476 10.1437\n", |
208 | | - "9.78387739003 10.1258\n", |
209 | | - "9.85021562296 10.112\n", |
210 | | - "10.2505734761 10.1189\n", |
211 | | - "9.70002484695 10.098\n", |
212 | | - "10.2094642982 10.1035\n", |
213 | | - "7.88918640832 9.99282\n", |
214 | | - "8.66084207803 9.92622\n", |
215 | | - "10.6783114899 9.96382\n", |
216 | | - "10.1540925096 9.97334\n", |
217 | | - "10.3180377247 9.99057\n", |
218 | | - "11.4462344283 10.0634\n", |
219 | | - "9.81404206269 10.0509\n", |
220 | | - "8.18052242173 9.95737\n", |
221 | | - "9.4081897806 9.92991\n", |
222 | | - "9.33938999337 9.90039\n", |
223 | | - "10.3886159164 9.9248\n", |
224 | | - "10.9320446741 9.97516\n", |
225 | | - "10.225204838 9.98766\n", |
226 | | - "10.3089972527 10.0037\n", |
227 | | - "9.31510652559 9.9693\n", |
228 | | - "9.58031921303 9.94985\n", |
229 | | - "9.74438420514 9.93958\n" |
| 96 | + "9.247841477069203 0.4623921\n", |
| 97 | + "10.019298730125382 0.9402374\n", |
| 98 | + "11.971773672793464 1.4918143\n", |
| 99 | + "10.702923359431118 1.9523697\n", |
| 100 | + "11.667057068606786 2.4381042\n", |
| 101 | + "9.143228690197773 2.7733603\n", |
| 102 | + "9.457709656523708 3.1075776\n", |
| 103 | + "12.33999608545561 3.5691986\n", |
| 104 | + "9.543410229631846 3.8679092\n", |
| 105 | + "9.251442209932934 4.137086\n", |
| 106 | + "8.942198790212387 4.3773413\n", |
| 107 | + "11.019946553148321 4.709471\n", |
| 108 | + "11.430198193578404 5.0455074\n", |
| 109 | + "8.6213954795195 5.224302\n", |
| 110 | + "10.822108995258686 5.504192\n", |
| 111 | + "10.58310002901428 5.7581377\n", |
| 112 | + "10.20420365104725 5.9804406\n", |
| 113 | + "10.312154931419304 6.1970263\n", |
| 114 | + "10.545111153579882 6.4144306\n", |
| 115 | + "8.797765458370709 6.5335975\n", |
| 116 | + "8.56686695526782 6.6352606\n", |
| 117 | + "12.570525410195215 6.9320235\n", |
| 118 | + "11.543815331679966 7.162613\n", |
| 119 | + "10.320920832332627 7.320528\n", |
| 120 | + "10.423914230722215 7.4756975\n", |
| 121 | + "10.619258439210187 7.6328754\n", |
| 122 | + "9.101109809288653 7.7062874\n", |
| 123 | + "9.841278298991933 7.813037\n", |
| 124 | + "9.099955845561944 7.877383\n", |
| 125 | + "9.41973125623955 7.9545\n", |
| 126 | + "11.082836040691273 8.110917\n", |
| 127 | + "10.116690980009775 8.2112055\n", |
| 128 | + "9.402594289154155 8.270775\n", |
| 129 | + "10.925993106488145 8.403536\n", |
| 130 | + "10.243254438024696 8.495522\n", |
| 131 | + "9.477769687949733 8.544634\n", |
| 132 | + "9.351362392482848 8.58497\n", |
| 133 | + "9.242191906408548 8.617831\n", |
| 134 | + "12.123667719477677 8.793122\n", |
| 135 | + "10.076009517273803 8.857266\n", |
| 136 | + "9.74900667301667 8.901854\n", |
| 137 | + "10.830363231386094 8.998279\n", |
| 138 | + "8.861116004341559 8.991421\n", |
| 139 | + "10.007389057190906 9.042218\n", |
| 140 | + "10.769369554012615 9.128575\n", |
| 141 | + "12.971561516039255 9.3207245\n", |
| 142 | + "9.875042913748056 9.34844\n", |
| 143 | + "9.64616462712992 9.363326\n", |
| 144 | + "9.76634851758219 9.383477\n", |
| 145 | + "9.326634526001623 9.380634\n", |
| 146 | + "8.492294014699189 9.336217\n", |
| 147 | + "10.006073094467316 9.369709\n", |
| 148 | + "9.442892778881891 9.373368\n", |
| 149 | + "9.56787198816676 9.383093\n", |
| 150 | + "9.961494974707488 9.412013\n", |
| 151 | + "9.572285501643822 9.420026\n", |
| 152 | + "11.851354361154291 9.541592\n", |
| 153 | + "10.833573476171445 9.606191\n", |
| 154 | + "11.836376240592454 9.7177\n", |
| 155 | + "11.047626672901409 9.784197\n", |
| 156 | + "10.913818292308468 9.840677\n", |
| 157 | + "10.60857743486623 9.879072\n", |
| 158 | + "9.883074005285522 9.879272\n", |
| 159 | + "8.227633816367192 9.79669\n", |
| 160 | + "9.788906167639809 9.796301\n", |
| 161 | + "9.001469197788671 9.756559\n", |
| 162 | + "8.918205933440774 9.714642\n", |
| 163 | + "9.885320274459133 9.723175\n", |
| 164 | + "10.77521268535355 9.775776\n", |
| 165 | + "9.68349427673202 9.771162\n", |
| 166 | + "10.113753965038361 9.788292\n", |
| 167 | + "9.6597232190883 9.781863\n", |
| 168 | + "9.323572053812015 9.758949\n", |
| 169 | + "9.618532841629188 9.751928\n", |
| 170 | + "9.011944462852757 9.714929\n", |
| 171 | + "8.323719148832197 9.645369\n", |
| 172 | + "9.442883485401897 9.635244\n", |
| 173 | + "10.430287903497137 9.674997\n", |
| 174 | + "10.838671174170663 9.733181\n", |
| 175 | + "9.346134056876938 9.713829\n", |
| 176 | + "10.234079103904495 9.739841\n", |
| 177 | + "9.692786236742311 9.737489\n", |
| 178 | + "8.675916172925552 9.68441\n", |
| 179 | + "9.7006074487691 9.68522\n", |
| 180 | + "10.064675943184373 9.704192\n", |
| 181 | + "9.4021612098359 9.689091\n", |
| 182 | + "11.124410899430886 9.760857\n", |
| 183 | + "10.034575898474612 9.774543\n", |
| 184 | + "9.793431430576485 9.775487\n", |
| 185 | + "10.889420930759462 9.831183\n", |
| 186 | + "9.253518007206916 9.8023\n", |
| 187 | + "11.114827470151916 9.867927\n", |
| 188 | + "9.378996323459113 9.843479\n", |
| 189 | + "9.864306640072803 9.844521\n", |
| 190 | + "11.803316169037448 9.94246\n", |
| 191 | + "10.103049011008196 9.95049\n", |
| 192 | + "8.723187258083906 9.889125\n", |
| 193 | + "8.985505621881307 9.843944\n", |
| 194 | + "10.690261212066178 9.88626\n", |
| 195 | + "8.426969249944442 9.813295\n" |
230 | 196 | ]
|
231 | 197 | }
|
232 | 198 | ],
|
|
244 | 210 | },
|
245 | 211 | {
|
246 | 212 | "cell_type": "markdown",
|
247 | | - "metadata": { |
248 | | - "deletable": true, |
249 | | - "editable": true |
250 | | - }, |
| 213 | + "metadata": {}, |
251 | 214 | "source": [
|
252 | 215 | "Check out the visualization by running TensorBoard from the terminal:\n",
|
253 | 216 | "\n",
|
254 | 217 | " $ tensorboard --logdir=path/to/logs"
|
255 | 218 | ]
|
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": 5, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "#made the logs be written successfully\n", |
| 227 | + "writer.close()" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": null, |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [] |
256 | 236 | }
|
257 | 237 | ],
|
258 | 238 | "metadata": {
|
|
271 | 251 | "name": "python",
|
272 | 252 | "nbconvert_exporter": "python",
|
273 | 253 | "pygments_lexer": "ipython3",
|
274 | | - "version": "3.5.2" |
| 254 | + "version": "3.6.4" |
275 | 255 | }
|
276 | 256 | },
|
277 | 257 | "nbformat": 4,
|
278 | | - "nbformat_minor": 0 |
| 258 | + "nbformat_minor": 1 |
279 | 259 | }
|
0 commit comments