Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit 85d6130

Browse files
Update Introduction to Machine Learning
1 parent ce8be93 commit 85d6130

File tree

1 file changed

+30
-0
lines changed

1 file changed

+30
-0
lines changed

‎Introduction to Machine Learning

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -190,3 +190,33 @@ Missing data
190190

191191
Using mean imputing;
192192
-------------------------------------------------------------------------------------------------------------------------------
193+
5. Tesing the Model's Accuracy
194+
-------------------------------
195+
* Statistics are only data. We define what is good or bad;
196+
* Performance Improvement Options
197+
-------------------------------
198+
a. Adjust current algorithm;
199+
b. Get more data or improve data;
200+
c. Improve training;
201+
d. Switch algorithms;
202+
203+
* Random Forest
204+
----------------
205+
-> Ensemble Algorithm;
206+
-> Fits multiple trees with subsets of data;
207+
-> Average tree results to improve performance and control overfitting;
208+
209+
- Train with training data: y = x1 + w2 * (x2)^3 + w3 * (x3)^8
210+
- complex decision boundary;
211+
- good fit of training data;
212+
- poor fit of test data;
213+
- Overfitting;
214+
215+
Fixing Overfitting
216+
------------------
217+
* Regularization hyperparameter
218+
y = x1 + w2 * (x2)^3 + w3 * (x3)^8 - f(W)/(lambda)
219+
y=x1+w2 * x2^3+w3 * x3^8−f(W)/λ
220+
- Cross validation;
221+
- Bias - variance trade-off;
222+
- Sacrifice some perfection for better overall performance;

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /