|
| 1 | +//! Power of Two Check |
| 2 | +//! |
| 3 | +//! This module provides a function to determine if a given positive integer is a power of two |
| 4 | +//! using efficient bit manipulation. |
| 5 | +//! |
| 6 | +//! # Algorithm |
| 7 | +//! |
| 8 | +//! The algorithm uses the property that powers of two have exactly one bit set in their |
| 9 | +//! binary representation. When we subtract 1 from a power of two, all bits after the single |
| 10 | +//! set bit become 1, and the set bit becomes 0: |
| 11 | +//! |
| 12 | +//! ```text |
| 13 | +//! n = 0..100..00 (power of 2) |
| 14 | +//! n - 1 = 0..011..11 |
| 15 | +//! n & (n - 1) = 0 (no intersections) |
| 16 | +//! ``` |
| 17 | +//! |
| 18 | +//! For example: |
| 19 | +//! - 8 in binary: 1000 |
| 20 | +//! - 7 in binary: 0111 |
| 21 | +//! - 8 & 7 = 0000 = 0 ✓ |
| 22 | +//! |
| 23 | +//! Author: Alexander Pantyukhin |
| 24 | +//! Date: November 1, 2022 |
| 25 | + |
| 26 | +/// Determines if a given number is a power of two. |
| 27 | +/// |
| 28 | +/// This function uses bit manipulation to efficiently check if a number is a power of two. |
| 29 | +/// A number is a power of two if it has exactly one bit set in its binary representation. |
| 30 | +/// The check `number & (number - 1) == 0` leverages this property. |
| 31 | +/// |
| 32 | +/// # Arguments |
| 33 | +/// |
| 34 | +/// * `number` - An integer to check (must be non-negative) |
| 35 | +/// |
| 36 | +/// # Returns |
| 37 | +/// |
| 38 | +/// A `Result` containing: |
| 39 | +/// - `Ok(true)` - If the number is a power of two (including 0 and 1) |
| 40 | +/// - `Ok(false)` - If the number is not a power of two |
| 41 | +/// - `Err(String)` - If the number is negative |
| 42 | +/// |
| 43 | +/// # Examples |
| 44 | +/// |
| 45 | +/// ``` |
| 46 | +/// use the_algorithms_rust::bit_manipulation::is_power_of_two; |
| 47 | +/// |
| 48 | +/// assert_eq!(is_power_of_two(0).unwrap(), true); |
| 49 | +/// assert_eq!(is_power_of_two(1).unwrap(), true); |
| 50 | +/// assert_eq!(is_power_of_two(2).unwrap(), true); |
| 51 | +/// assert_eq!(is_power_of_two(4).unwrap(), true); |
| 52 | +/// assert_eq!(is_power_of_two(8).unwrap(), true); |
| 53 | +/// assert_eq!(is_power_of_two(16).unwrap(), true); |
| 54 | +/// |
| 55 | +/// assert_eq!(is_power_of_two(3).unwrap(), false); |
| 56 | +/// assert_eq!(is_power_of_two(6).unwrap(), false); |
| 57 | +/// assert_eq!(is_power_of_two(17).unwrap(), false); |
| 58 | +/// |
| 59 | +/// // Negative numbers return an error |
| 60 | +/// assert!(is_power_of_two(-1).is_err()); |
| 61 | +/// ``` |
| 62 | +/// |
| 63 | +/// # Errors |
| 64 | +/// |
| 65 | +/// Returns an error if the input number is negative. |
| 66 | +/// |
| 67 | +/// # Time Complexity |
| 68 | +/// |
| 69 | +/// O(1) - The function performs a constant number of operations regardless of input size. |
| 70 | +pub fn is_power_of_two(number: i32) -> Result<bool, String> { |
| 71 | + if number < 0 { |
| 72 | + return Err("number must not be negative".to_string()); |
| 73 | + } |
| 74 | + |
| 75 | + // Convert to u32 for safe bit operations |
| 76 | + let num = number as u32; |
| 77 | + |
| 78 | + // Check if number & (number - 1) == 0 |
| 79 | + // For powers of 2, this will always be true |
| 80 | + Ok(num & num.wrapping_sub(1) == 0) |
| 81 | +} |
| 82 | + |
| 83 | +#[cfg(test)] |
| 84 | +mod tests { |
| 85 | + use super::*; |
| 86 | + |
| 87 | + #[test] |
| 88 | + fn test_zero() { |
| 89 | + // 0 is considered a power of 2 by the algorithm (2^(-∞) interpretation) |
| 90 | + assert!(is_power_of_two(0).unwrap()); |
| 91 | + } |
| 92 | + |
| 93 | + #[test] |
| 94 | + fn test_one() { |
| 95 | + // 1 = 2^0 |
| 96 | + assert!(is_power_of_two(1).unwrap()); |
| 97 | + } |
| 98 | + |
| 99 | + #[test] |
| 100 | + fn test_powers_of_two() { |
| 101 | + assert!(is_power_of_two(2).unwrap()); // 2^1 |
| 102 | + assert!(is_power_of_two(4).unwrap()); // 2^2 |
| 103 | + assert!(is_power_of_two(8).unwrap()); // 2^3 |
| 104 | + assert!(is_power_of_two(16).unwrap()); // 2^4 |
| 105 | + assert!(is_power_of_two(32).unwrap()); // 2^5 |
| 106 | + assert!(is_power_of_two(64).unwrap()); // 2^6 |
| 107 | + assert!(is_power_of_two(128).unwrap()); // 2^7 |
| 108 | + assert!(is_power_of_two(256).unwrap()); // 2^8 |
| 109 | + assert!(is_power_of_two(512).unwrap()); // 2^9 |
| 110 | + assert!(is_power_of_two(1024).unwrap()); // 2^10 |
| 111 | + assert!(is_power_of_two(2048).unwrap()); // 2^11 |
| 112 | + assert!(is_power_of_two(4096).unwrap()); // 2^12 |
| 113 | + assert!(is_power_of_two(8192).unwrap()); // 2^13 |
| 114 | + assert!(is_power_of_two(16384).unwrap()); // 2^14 |
| 115 | + assert!(is_power_of_two(32768).unwrap()); // 2^15 |
| 116 | + assert!(is_power_of_two(65536).unwrap()); // 2^16 |
| 117 | + } |
| 118 | + |
| 119 | + #[test] |
| 120 | + fn test_non_powers_of_two() { |
| 121 | + assert!(!is_power_of_two(3).unwrap()); |
| 122 | + assert!(!is_power_of_two(5).unwrap()); |
| 123 | + assert!(!is_power_of_two(6).unwrap()); |
| 124 | + assert!(!is_power_of_two(7).unwrap()); |
| 125 | + assert!(!is_power_of_two(9).unwrap()); |
| 126 | + assert!(!is_power_of_two(10).unwrap()); |
| 127 | + assert!(!is_power_of_two(11).unwrap()); |
| 128 | + assert!(!is_power_of_two(12).unwrap()); |
| 129 | + assert!(!is_power_of_two(13).unwrap()); |
| 130 | + assert!(!is_power_of_two(14).unwrap()); |
| 131 | + assert!(!is_power_of_two(15).unwrap()); |
| 132 | + assert!(!is_power_of_two(17).unwrap()); |
| 133 | + assert!(!is_power_of_two(18).unwrap()); |
| 134 | + } |
| 135 | + |
| 136 | + #[test] |
| 137 | + fn test_specific_non_powers() { |
| 138 | + assert!(!is_power_of_two(6).unwrap()); |
| 139 | + assert!(!is_power_of_two(17).unwrap()); |
| 140 | + assert!(!is_power_of_two(100).unwrap()); |
| 141 | + assert!(!is_power_of_two(1000).unwrap()); |
| 142 | + } |
| 143 | + |
| 144 | + #[test] |
| 145 | + fn test_large_powers_of_two() { |
| 146 | + assert!(is_power_of_two(131072).unwrap()); // 2^17 |
| 147 | + assert!(is_power_of_two(262144).unwrap()); // 2^18 |
| 148 | + assert!(is_power_of_two(524288).unwrap()); // 2^19 |
| 149 | + assert!(is_power_of_two(1048576).unwrap()); // 2^20 |
| 150 | + } |
| 151 | + |
| 152 | + #[test] |
| 153 | + fn test_numbers_near_powers_of_two() { |
| 154 | + // One less than powers of 2 |
| 155 | + assert!(!is_power_of_two(3).unwrap()); // 2^2 - 1 |
| 156 | + assert!(!is_power_of_two(7).unwrap()); // 2^3 - 1 |
| 157 | + assert!(!is_power_of_two(15).unwrap()); // 2^4 - 1 |
| 158 | + assert!(!is_power_of_two(31).unwrap()); // 2^5 - 1 |
| 159 | + assert!(!is_power_of_two(63).unwrap()); // 2^6 - 1 |
| 160 | + assert!(!is_power_of_two(127).unwrap()); // 2^7 - 1 |
| 161 | + assert!(!is_power_of_two(255).unwrap()); // 2^8 - 1 |
| 162 | + |
| 163 | + // One more than powers of 2 |
| 164 | + assert!(!is_power_of_two(3).unwrap()); // 2^1 + 1 |
| 165 | + assert!(!is_power_of_two(5).unwrap()); // 2^2 + 1 |
| 166 | + assert!(!is_power_of_two(9).unwrap()); // 2^3 + 1 |
| 167 | + assert!(!is_power_of_two(17).unwrap()); // 2^4 + 1 |
| 168 | + assert!(!is_power_of_two(33).unwrap()); // 2^5 + 1 |
| 169 | + assert!(!is_power_of_two(65).unwrap()); // 2^6 + 1 |
| 170 | + assert!(!is_power_of_two(129).unwrap()); // 2^7 + 1 |
| 171 | + } |
| 172 | + |
| 173 | + #[test] |
| 174 | + fn test_negative_number_returns_error() { |
| 175 | + let result = is_power_of_two(-1); |
| 176 | + assert!(result.is_err()); |
| 177 | + assert_eq!(result.unwrap_err(), "number must not be negative"); |
| 178 | + } |
| 179 | + |
| 180 | + #[test] |
| 181 | + fn test_multiple_negative_numbers() { |
| 182 | + assert!(is_power_of_two(-1).is_err()); |
| 183 | + assert!(is_power_of_two(-2).is_err()); |
| 184 | + assert!(is_power_of_two(-4).is_err()); |
| 185 | + assert!(is_power_of_two(-8).is_err()); |
| 186 | + assert!(is_power_of_two(-100).is_err()); |
| 187 | + } |
| 188 | + |
| 189 | + #[test] |
| 190 | + fn test_all_powers_of_two_up_to_30() { |
| 191 | + // Test 2^0 through 2^30 |
| 192 | + for i in 0..=30 { |
| 193 | + let power = 1u32 << i; // 2^i |
| 194 | + assert!( |
| 195 | + is_power_of_two(power as i32).unwrap(), |
| 196 | + "2^{i} = {power} should be a power of 2" |
| 197 | + ); |
| 198 | + } |
| 199 | + } |
| 200 | + |
| 201 | + #[test] |
| 202 | + fn test_range_verification() { |
| 203 | + // Test that between consecutive powers of 2, only the powers return true |
| 204 | + for i in 1..10 { |
| 205 | + let power = 1 << i; // 2^i |
| 206 | + assert!(is_power_of_two(power).unwrap()); |
| 207 | + |
| 208 | + // Check numbers between this power and the next |
| 209 | + let next_power = 1 << (i + 1); |
| 210 | + for num in (power + 1)..next_power { |
| 211 | + assert!( |
| 212 | + !is_power_of_two(num).unwrap(), |
| 213 | + "{num} should not be a power of 2" |
| 214 | + ); |
| 215 | + } |
| 216 | + } |
| 217 | + } |
| 218 | + |
| 219 | + #[test] |
| 220 | + fn test_bit_manipulation_correctness() { |
| 221 | + // Verify the bit manipulation logic for specific examples |
| 222 | + // For 8: 1000 & 0111 = 0000 ✓ |
| 223 | + assert_eq!(8 & 7, 0); |
| 224 | + assert!(is_power_of_two(8).unwrap()); |
| 225 | + |
| 226 | + // For 16: 10000 & 01111 = 00000 ✓ |
| 227 | + assert_eq!(16 & 15, 0); |
| 228 | + assert!(is_power_of_two(16).unwrap()); |
| 229 | + |
| 230 | + // For 6: 110 & 101 = 100 ✗ |
| 231 | + assert_ne!(6 & 5, 0); |
| 232 | + assert!(!is_power_of_two(6).unwrap()); |
| 233 | + } |
| 234 | + |
| 235 | + #[test] |
| 236 | + fn test_edge_case_max_i32_power_of_two() { |
| 237 | + // Largest power of 2 that fits in i32: 2^30 = 1073741824 |
| 238 | + assert!(is_power_of_two(1073741824).unwrap()); |
| 239 | + } |
| 240 | +} |
0 commit comments