Clicky

Fortran Wiki
Bessel function (changes)

Skip the Navigation Links | Home Page | All Pages | Recently Revised | Authors | Feeds | Export |

Showing changes from revision #2 to #3: (追記) Added (追記ここまで) | (削除) Removed (削除ここまで) | (削除) Chan (削除ここまで)(追記) ged (追記ここまで)

Bessel functions, are canonical solutions y(x)(削除) (削除ここまで)(追記) y(x) (追記ここまで)(削除) Y_n(x) (削除ここまで)(削除) = (削除ここまで)(削除) \\ (削除ここまで)(削除) Y_n(x) (削除ここまで)(削除) = (削除ここまで)(削除) (削除ここまで)(削除) (削除ここまで)(削除) (削除ここまで)(削除) (削除ここまで)(削除) \\y(x) (削除ここまで) of Bessel’s differential equation:

(削除) x^2 \\frac{d^2 y}{dx^2} + x \\frac{dy}{dx} + (x^2 - \\alpha^2) y = 0 (削除ここまで)(追記) x 2d 2ydx 2+xdydx+(x 2α 2)y=0 x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2) y = 0 (追記ここまで)

for an arbitrary real or complex number (削除) \\alpha (削除ここまで)(追記) α\alpha (追記ここまで) (the order of the Bessel function). The most common and important special case is where (削除) \\alpha (削除ここまで)(追記) α\alpha (追記ここまで) is an integer (in which case we call it n(削除) (削除ここまで)(追記) n (追記ここまで)(削除) x^2 (削除ここまで)(削除) \\\\\\n (削除ここまで)).

Bessel Functions of the First Kind: (削除) J_\\alpha (削除ここまで)(追記) J αJ_\alpha (追記ここまで)

Bessel functions of the first kind, denoted (削除) J_\\alpha(x) (削除ここまで)(追記) J α(x)J_\alpha(x) (追記ここまで), are solutions of Bessel’s differential equation that are finite at the origin (x=0(削除) J_\\J_\\x (削除ここまで)(追記) x (追記ここまで) = 0) for non-negative integer (削除) \\alpha (削除ここまで)(追記) α\alpha (追記ここまで), and diverge as (削除) x \\to 0 (削除ここまで)(追記) x0x \to 0 (追記ここまで) for negative non-integer (削除) \\alpha (削除ここまで)(追記) α\alpha (追記ここまで). It is possible to define the function by its Taylor series expansion around x=0(削除) \\x (削除ここまで)(追記) x (追記ここまで)(削除) \\\\x (削除ここまで) = 0:

(削除) J_\\alpha(x) = \\sum_{m=0}^\\infty \\frac{(-1)^m}{m! \\Gamma(m+\\alpha+1)} {\\left({\\frac{x}{2}}\\right)}^{2m+\\alpha} (削除ここまで)(追記) J α(x)= m=0 (1) mm!Γ(m+α+1)(x2) 2m+α J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma(m+\alpha+1)} {\left({\frac{x}{2}}\right)}^{2m+\alpha} (追記ここまで)

where (削除) \\Gamma(z) (削除ここまで)(追記) Γ(z)\Gamma(z) (追記ここまで) is the gamma function, a generalization of the factorial function to non-integer values.

For evaluating Bessel functions of the first kind in Fortran, see bessel_j0, bessel_j1, and bessel_jn.

Bessel Functions of the Second Kind: (削除) Y_\\alpha (削除ここまで)(追記) Y αY_\alpha (追記ここまで)

Bessel functions of the second kind, denoted by (削除) Y_\\alpha(x) (削除ここまで)(追記) Y α(x)Y_\alpha(x) (追記ここまで), are solutions of the Bessel differential equation. They are singular (infinite) at the origin (x=0(削除) (削除ここまで)(追記) x (追記ここまで)(削除) J_\\\\Y_\\Y_\\x (削除ここまで) = 0).

For non-integer (削除) \\alpha (削除ここまで)(追記) α\alpha (追記ここまで), it is related to (削除) J_\\alpha(x) (削除ここまで)(追記) J α(x)J_\alpha(x) (追記ここまで) by:

(削除) Y_\\alpha(x) = \\frac{J_\\alpha(x) \\cos(\\alpha\\pi) - J_{-\\alpha}(x)}{\\sin(\\alpha\\pi)}. (削除ここまで)(追記) Y α(x)=J α(x)cos(απ)J α(x)sin(απ). Y_\alpha(x) = \frac{J_\alpha(x) \cos(\alpha\pi) - J_{-\alpha}(x)}{\sin(\alpha\pi)}. (追記ここまで)

In the case of integer order n(削除) \\J_\\ (削除ここまで)(追記) n (追記ここまで)(削除) Y_\\n (削除ここまで), the function is defined by taking the limit as a non-integer (削除) \\alpha (削除ここまで)(追記) α\alpha (追記ここまで) tends to n(削除) \\n (削除ここまで)(追記) n (追記ここまで):

(削除) Y_n(x) = \\lim_{\\alpha \\to n} Y_\\alpha(x), (削除ここまで)(追記) Y n(x)=lim αnY α(x), Y_n(x) = \lim_{\alpha \to n} Y_\alpha(x), (追記ここまで)

which has the result (in integral form)

(削除) Y_n(x) = \\frac{1}{\\pi} \\int_{0}^{\\pi} \\sin(x \\sin\\theta - n\\theta)d\\theta - \\frac{1}{\\pi} \\int_{0}^{\\infty} \\left[ e^{n t} + (-1)^n e^{-n t} \\right] e^{-x \\sinh t} dt. (削除ここまで)(追記) Y n(x)=1π 0 πsin(xsinθnθ)dθ1π 0 [e nt+(1) ne nt]e xsinhtdt. Y_n(x) = \frac{1}{\pi} \int_{0}^{\pi} \sin(x \sin\theta - n\theta)d\theta - \frac{1}{\pi} \int_{0}^{\infty} \left[ e^{n t} + (-1)^n e^{-n t} \right] e^{-x \sinh t} dt. (追記ここまで)

For evaluating Bessel functions of the second kind in Fortran, see bessel_y0, bessel_y1, and bessel_yn.

Revised on March 1, 2023 12:47:49 by Jason Blevins (23.245.217.121) (2041 characters / 0.0 pages)
Edit | Back in time (2 revisions) | Hide changes | History | Views: Print | TeX | Source | Linked from: bessel_j0, bessel_j1, bessel_jn, bessel_y0, bessel_y1, bessel_yn, 2009, 2011

AltStyle によって変換されたページ (->オリジナル) /