Jump to content
Wikipedia The Free Encyclopedia

Total angular momentum quantum number

From Wikipedia, the free encyclopedia
(Redirected from Total angular momentum)
Quantum number related to rotational symmetry

In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin).

If s is the particle's spin angular momentum and l its orbital angular momentum vector, the total angular momentum j is j = s +   . {\displaystyle \mathbf {j} =\mathbf {s} +{\boldsymbol {\ell }}~.} {\displaystyle \mathbf {j} =\mathbf {s} +{\boldsymbol {\ell }}~.}

The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps:[1] | s | j + s {\displaystyle \vert \ell -s\vert \leq j\leq \ell +s} {\displaystyle \vert \ell -s\vert \leq j\leq \ell +s} where l is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is the spin quantum number (parameterizing the spin).

The relation between the total angular momentum vector j and the total angular momentum quantum number j is given by the usual relation (see angular momentum quantum number) j = j ( j + 1 ) {\displaystyle \Vert \mathbf {j} \Vert ={\sqrt {j,円(j+1)}},円\hbar } {\displaystyle \Vert \mathbf {j} \Vert ={\sqrt {j,円(j+1)}},円\hbar }

The vector's z-projection is given by j z = m j {\displaystyle j_{z}=m_{j},円\hbar } {\displaystyle j_{z}=m_{j},円\hbar } where mj is the secondary total angular momentum quantum number, and the {\displaystyle \hbar } {\displaystyle \hbar } is the reduced Planck constant. It ranges from −j to +j in steps of one. This generates 2j + 1 different values of mj.

The total angular momentum corresponds to the Casimir invariant of the Lie algebra so(3) of the three-dimensional rotation group.

See also

[edit ]

References

[edit ]
  1. ^ Hollas, J. Michael (1996). Modern Spectroscopy (3rd ed.). John Wiley & Sons. p. 180. ISBN 0-471-96522-7.
[edit ]


Stub icon

This quantum mechanics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /