Jump to content
Wikipedia The Free Encyclopedia

Linear polarization

From Wikipedia, the free encyclopedia
(Redirected from Plane polarization)
Electromagnetic radiation special case
This article includes a list of general references, but it lacks sufficient corresponding inline citations . Please help to improve this article by introducing more precise citations. (May 2020) (Learn how and when to remove this message)
Diagram of the electric field of a light wave (blue), linear-polarized along a plane (purple line), and consisting of two orthogonal, in-phase components (red and green waves)

In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. The term linear polarization (French: polarisation rectiligne) was coined by Augustin-Jean Fresnel in 1822.[1] See polarization and plane of polarization for more information.

The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector.[2] For example, if the electric field vector is vertical (alternately up and down as the wave travels) the radiation is said to be vertically polarized.

Mathematical description

[edit ]

The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)

E ( r , t ) = | E | R e { | ψ exp [ i ( k z ω t ) ] } {\displaystyle \mathbf {E} (\mathbf {r} ,t)=|\mathbf {E} |\mathrm {Re} \left\{|\psi \rangle \exp \left[i\left(kz-\omega t\right)\right]\right\}} {\displaystyle \mathbf {E} (\mathbf {r} ,t)=|\mathbf {E} |\mathrm {Re} \left\{|\psi \rangle \exp \left[i\left(kz-\omega t\right)\right]\right\}}
B ( r , t ) = z ^ × E ( r , t ) / c {\displaystyle \mathbf {B} (\mathbf {r} ,t)={\hat {\mathbf {z} }}\times \mathbf {E} (\mathbf {r} ,t)/c} {\displaystyle \mathbf {B} (\mathbf {r} ,t)={\hat {\mathbf {z} }}\times \mathbf {E} (\mathbf {r} ,t)/c}

for the magnetic field, where k is the wavenumber,

ω = c k {\displaystyle \omega _{}^{}=ck} {\displaystyle \omega _{}^{}=ck}

is the angular frequency of the wave, and c {\displaystyle c} {\displaystyle c} is the speed of light.

Here E {\displaystyle \mid \mathbf {E} \mid } {\displaystyle \mid \mathbf {E} \mid } is the amplitude of the field and

| ψ   = d e f   ( ψ x ψ y ) = ( cos θ exp ( i α x ) sin θ exp ( i α y ) ) {\displaystyle |\psi \rangle \ {\stackrel {\mathrm {def} }{=}}\ {\begin{pmatrix}\psi _{x}\\\psi _{y}\end{pmatrix}}={\begin{pmatrix}\cos \theta \exp \left(i\alpha _{x}\right)\\\sin \theta \exp \left(i\alpha _{y}\right)\end{pmatrix}}} {\displaystyle |\psi \rangle \ {\stackrel {\mathrm {def} }{=}}\ {\begin{pmatrix}\psi _{x}\\\psi _{y}\end{pmatrix}}={\begin{pmatrix}\cos \theta \exp \left(i\alpha _{x}\right)\\\sin \theta \exp \left(i\alpha _{y}\right)\end{pmatrix}}}

is the Jones vector in the x-y plane.

The wave is linearly polarized when the phase angles α x , α y {\displaystyle \alpha _{x}^{},\alpha _{y}} {\displaystyle \alpha _{x}^{},\alpha _{y}} are equal,

α x = α y   = d e f   α {\displaystyle \alpha _{x}=\alpha _{y}\ {\stackrel {\mathrm {def} }{=}}\ \alpha } {\displaystyle \alpha _{x}=\alpha _{y}\ {\stackrel {\mathrm {def} }{=}}\ \alpha }.

This represents a wave polarized at an angle θ {\displaystyle \theta } {\displaystyle \theta } with respect to the x axis. In that case, the Jones vector can be written

| ψ = ( cos θ sin θ ) exp ( i α ) {\displaystyle |\psi \rangle ={\begin{pmatrix}\cos \theta \\\sin \theta \end{pmatrix}}\exp \left(i\alpha \right)} {\displaystyle |\psi \rangle ={\begin{pmatrix}\cos \theta \\\sin \theta \end{pmatrix}}\exp \left(i\alpha \right)}.

The state vectors for linear polarization in x or y are special cases of this state vector.

If unit vectors are defined such that

| x   = d e f   ( 1 0 ) {\displaystyle |x\rangle \ {\stackrel {\mathrm {def} }{=}}\ {\begin{pmatrix}1\0円\end{pmatrix}}} {\displaystyle |x\rangle \ {\stackrel {\mathrm {def} }{=}}\ {\begin{pmatrix}1\0円\end{pmatrix}}}

and

| y   = d e f   ( 0 1 ) {\displaystyle |y\rangle \ {\stackrel {\mathrm {def} }{=}}\ {\begin{pmatrix}0\1円\end{pmatrix}}} {\displaystyle |y\rangle \ {\stackrel {\mathrm {def} }{=}}\ {\begin{pmatrix}0\1円\end{pmatrix}}}

then the polarization state can be written in the "x-y basis" as

| ψ = cos θ exp ( i α ) | x + sin θ exp ( i α ) | y = ψ x | x + ψ y | y {\displaystyle |\psi \rangle =\cos \theta \exp \left(i\alpha \right)|x\rangle +\sin \theta \exp \left(i\alpha \right)|y\rangle =\psi _{x}|x\rangle +\psi _{y}|y\rangle } {\displaystyle |\psi \rangle =\cos \theta \exp \left(i\alpha \right)|x\rangle +\sin \theta \exp \left(i\alpha \right)|y\rangle =\psi _{x}|x\rangle +\psi _{y}|y\rangle }.

See also

[edit ]

References

[edit ]
  • Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X.
  1. ^ A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9 December 1822; printed in H. de Senarmont, E. Verdet, and L. Fresnel (eds.), Oeuvres complètes d'Augustin Fresnel, vol. 1 (1866), pp. 731–51; translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", Zenodo4745976 , 2021 (open access); §9.
  2. ^ Shapira, Joseph; Shmuel Y. Miller (2007). CDMA radio with repeaters. Springer. p. 73. ISBN 978-0-387-26329-8.
[edit ]

Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on January 22, 2022.

AltStyle によって変換されたページ (->オリジナル) /