Luciferin
- View a machine-translated version of the German article.
- Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia.
- Consider adding a topic to this template: there are already 2,303 articles in the main category, and specifying
|topic=
will aid in categorization. - Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
- You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is
Content in this edit is translated from the existing German Wikipedia article at [[:de:Luciferine]]; see its history for attribution.
- You may also add the template
{{Translated|de|Luciferine}}
to the talk page. - For more guidance, see Wikipedia:Translation.
Luciferin (from Latin lucifer 'light-bearer') is a generic term for the light-emitting compound found in organisms that generate bioluminescence. Luciferins typically undergo an enzyme-catalyzed reaction with molecular oxygen. The resulting transformation, which usually involves breaking off a molecular fragment, produces an excited state intermediate that emits light upon decaying to its ground state. The term may refer to molecules that are substrates for both luciferases and photoproteins.[1]
Types
[edit ]Luciferins are a class of small-molecule substrates that react with oxygen in the presence of a luciferase (an enzyme) to release energy in the form of light. It is not known just how many types of luciferins there are, but some of the better-studied compounds are listed below.
Because of the chemical diversity of luciferins, there is no clear unifying mechanism of action, except that all require molecular oxygen,[2] The variety of luciferins and luciferases, their diverse reaction mechanisms and the scattered phylogenetic distribution indicate that many of them have arisen independently in the course of evolution.[2]
Firefly
[edit ]Firefly luciferin is the luciferin found in many Lampyridae species, such as P. pyralis . It is the substrate of beetle luciferases (EC 1.13.12.7) responsible for the characteristic yellow light emission from fireflies, though can cross-react to produce light with related enzymes from non-luminous species.[3] The chemistry is unusual, as adenosine triphosphate (ATP) is required for light emission, in addition to molecular oxygen.[4]
Snail
[edit ]Latia luciferin is, in terms of chemistry, (E)-2-methyl-4-(2,6,6-trimethyl-1-cyclohex-1-yl)-1-buten-1-ol formate and is from the freshwater snail Latia neritoides .[5]
Bacterial
[edit ]Bacterial luciferin is two-component system consisting of flavin mononucleotide and a fatty aldehyde found in bioluminescent bacteria.[6]
Coelenterazine
[edit ]Coelenterazine is found in radiolarians, ctenophores, cnidarians, squid, brittle stars, copepods, chaetognaths, fish, and shrimp. It is the prosthetic group in the protein aequorin responsible for the blue light emission.[7]
Dinoflagellate
[edit ]Dinoflagellate luciferin is a chlorophyll derivative (i. e. a tetrapyrrole) and is found in some dinoflagellates, which are often responsible for the phenomenon of nighttime glowing waves (historically this was called phosphorescence, but is a misleading term). A very similar type of luciferin is found in some types of euphausiid shrimp.[8]
Vargulin
[edit ]Vargulin is found in certain ostracods and deep-sea fish, to be specific, Poricthys . Like the compound coelenterazine, it is an imidazopyrazinone and emits primarily blue light in the animals.
Fungi
[edit ]Foxfire is the bioluminescence created by some species of fungi present in decaying wood. While there may be multiple different luciferins within the kingdom of fungi, 3-hydroxy hispidin was determined to be the luciferin in the fruiting bodies of several species of fungi, including Neonothopanus nambi , Omphalotus olearius , Omphalotus nidiformis , and Panellus stipticus .[9]
Usage in science
[edit ]Luciferin is widely used in science and medicine as a method of in vivo imaging, using living organisms to non-invasively detect images and in molecular imaging. The reaction between luciferin substrate paired with the receptor enzyme luciferase produces a catalytic reaction, generating bioluminescence.[10] This reaction and the luminescence produced is useful for imaging such as detecting tumors from cancer or capable of measuring gene expression.
References
[edit ]- ^ Hastings JW (1996). "Chemistries and colors of bioluminescent reactions: a review". Gene. 173 (1 Spec No): 5–11. doi:10.1016/0378-1119(95)00676-1. PMID 8707056.
- ^ a b Hastings JW (1983). "Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems". Journal of Molecular Evolution. 19 (5): 309–321. Bibcode:1983JMolE..19..309H. doi:10.1007/BF02101634. PMID 6358519. S2CID 875590.
- ^ Viviani VR, Bechara EJ (1996). "Larval Tenebrio molitor (Coleoptera: Tenebrionidae) Fat Body Extracts Catalyze Firefly D-Luciferin-and ATP-Dependent Chemiluminescence: A Luciferase-like Enzyme". Photochemistry and Photobiology. 63 (6): 713–718. doi:10.1111/j.1751-1097.1996.tb09620.x. S2CID 83498776.
- ^ Green A, Mcelroy WD (October 1956). "Function of adenosine triphosphate in the activation of luciferin". Archives of Biochemistry and Biophysics. 64 (2): 257–271. doi:10.1016/0003-9861(56)90268-5. PMID 13363432.
- ^ EC 1.14.99.21. ORENZA: a database of ORphan ENZyme Activities, accessed 27 November 2009.
- ^ Madden D, Lidesten BM (2001). "Bacterial illumination" (PDF). Bioscience Explained. 1 (1).
- ^ Shimomura O, Johnson FH (April 1975). "Chemical nature of bioluminescence systems in coelenterates". Proceedings of the National Academy of Sciences of the United States of America. 72 (4): 1546–1549. Bibcode:1975PNAS...72.1546S. doi:10.1073/pnas.72.4.1546 . PMC 432574 . PMID 236561.
- ^ Dunlap JC, Hastings JW, Shimomura O (March 1980). "Crossreactivity between the light-emitting systems of distantly related organisms: Novel type of light-emitting compound". Proceedings of the National Academy of Sciences of the United States of America. 77 (3): 1394–1397. Bibcode:1980PNAS...77.1394D. doi:10.1073/pnas.77.3.1394 . PMC 348501 . PMID 16592787.
- ^ Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, Kaskova ZM, et al. (July 2015). "The Chemical Basis of Fungal Bioluminescence". Angewandte Chemie. 54 (28): 8124–8128. doi:10.1002/anie.201501779. PMID 26094784.
- ^ Badr CE, Tannous BA (December 2011). "Bioluminescence imaging: progress and applications". Trends in Biotechnology. 29 (12): 624–633. doi:10.1016/j.tibtech.2011年06月01日0. PMC 4314955 . PMID 21788092.
External links
[edit ]- "Major luciferin types". The Bioluminescence Web Page. University of California, Santa Barbara. 2009年01月09日. Retrieved 2009年03月06日.