Davenport constant
Find sources: "Davenport constant" – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this message)
In mathematics, the Davenport constant D(G ) is an invariant of a group studied in additive combinatorics, quantifying the size of nonunique factorizations. Given a finite abelian group G, D(G ) is defined as the smallest number such that every sequence of elements of that length contains a non-empty subsequence adding up to 0. In symbols, this is[1]
- {\displaystyle D(G)=\min \left\{N:\forall \left(\{g_{n}\}_{n=1}^{N}\in G^{N}\right)\left(\exists \{n_{k}\}_{k=1}^{K}:\sum _{k=1}^{K}{g_{n_{k}}}=0\right)\right\}.}
Example
[edit ]- The Davenport constant for the cyclic group {\displaystyle G=\mathbb {Z} /n\mathbb {Z} } is n. To see this, note that the sequence of a fixed generator, repeated n − 1 times, contains no subsequence with sum 0. Thus D(G ) ≥ n. On the other hand, if {\displaystyle \{g_{k}\}_{k=1}^{n}} is an arbitrary sequence, then two of the sums in the sequence {\displaystyle \left\{\sum _{k=1}^{K}{g_{k}}\right\}_{K=0}^{n}} are equal. The difference of these two sums also gives a subsequence with sum 0.[2]
Properties
[edit ]- Consider a finite abelian group G = ⊕i Cdi , where the d1 | d2 | ... | dr are invariant factors. Then
- {\displaystyle D(G)\geq M(G)=1-r+\sum _{i}{d_{i}}.}
- The lower bound is proved by noting that the sequence "d1 − 1 copies of (1, 0, ..., 0), d2 − 1 copies of (0, 1, ..., 0), etc." contains no subsequence with sum 0.[3]
- D = M for p-groups or for r = 1, 2.
- D = M for certain groups including all groups of the form C2 ⊕ C2n ⊕ C2nm and C3 ⊕ C3n ⊕ C3nm.
- There are infinitely many examples with r at least 4 where D does not equal M; it is not known whether there are any with r = 3.[3]
- Let {\displaystyle \exp(G)} be the exponent of G. Then[4]
- {\displaystyle {\frac {D(G)}{\exp(G)}}\leq 1+\log \left({\frac {|G|}{\exp(G)}}\right).}
Applications
[edit ]The original motivation for studying Davenport's constant was the problem of non-unique factorization in number fields. Let {\displaystyle {\mathcal {O}}} be the ring of integers in a number field, G its class group. Then every element {\displaystyle \alpha \in {\mathcal {O}}}, which factors into at least D(G ) non-trivial ideals, is properly divisible by an element of {\displaystyle {\mathcal {O}}}. This observation implies that Davenport's constant determines by how much the lengths of different factorization of some element in {\displaystyle {\mathcal {O}}} can differ.[5] [citation needed ]
The upper bound mentioned above plays an important role in Ahlford, Granville and Pomerance's proof of the existence of infinitely many Carmichael numbers.[4]
Variants
[edit ]Olson's constant O(G ) uses the same definition, but requires the elements of {\displaystyle \{g_{n}\}_{n=1}^{N}} to be distinct.[6]
- Balandraud proved that O(Cp ) equals the smallest k such that {\displaystyle {\frac {k(k+1)}{2}}\geq p}.
- For p > 6000 we have
- {\displaystyle O(C_{p}\oplus C_{p})=p-1+O(C_{p})}.
- On the other hand, if G = C r
p with r ≥ p, then Olson's constant equals the Davenport constant.[7]
References
[edit ]- ^ Geroldinger, Alfred (2009). "Additive group theory and non-unique factorizations". In Geroldinger, Alfred; Ruzsa, Imre Z. (eds.). Combinatorial number theory and additive group theory . Advanced Courses in Mathematics CRM Barcelona. Elsholtz, C.; Freiman, G.; Hamidoune, Y. O.; Hegyvári, N.; Károlyi, G.; Nathanson, M.; Sólymosi, J.; Stanchescu, Y. With a foreword by Javier Cilleruelo, Marc Noy and Oriol Serra (Coordinators of the DocCourse). Basel: Birkhäuser. pp. 1–86. doi:10.1007/978-3-7643-8962-8. ISBN 978-3-7643-8961-1. Zbl 1221.20045.
- ^ Geroldinger 2009, p. 24.
- ^ a b Bhowmik, Gautami; Schlage-Puchta, Jan-Christoph (2007). "Davenport's constant for groups of the form {\displaystyle \mathbb {z} }3⊕{\displaystyle \mathbb {z} }3⊕{\displaystyle \mathbb {z} }3d" (PDF). In Granville, Andrew; Nathanson, Melvyn B.; Solymosi, József (eds.). Additive combinatorics. CRM Proceedings and Lecture Notes. Vol. 43. Providence, RI: American Mathematical Society. pp. 307–326. ISBN 978-0-8218-4351-2. Zbl 1173.11012.
- ^ a b W. R. Alford; Andrew Granville; Carl Pomerance (1994). "There are Infinitely Many Carmichael Numbers" (PDF). Annals of Mathematics . 139 (3): 703–722. doi:10.2307/2118576. JSTOR 2118576.
- ^ Olson, John E. (1969年01月01日). "A combinatorial problem on finite Abelian groups, I". Journal of Number Theory. 1 (1): 8–10. Bibcode:1969JNT.....1....8O. doi:10.1016/0022-314X(69)90021-3 . ISSN 0022-314X.
- ^ Nguyen, Hoi H.; Vu, Van H. (2012年01月01日). "A characterization of incomplete sequences in vector spaces". Journal of Combinatorial Theory, Series A. 119 (1): 33–41. arXiv:1112.0754 . doi:10.1016/j.jcta.2011年06月01日2. ISSN 0097-3165.
- ^ Ordaz, Oscar; Philipp, Andreas; Santos, Irene; Schmidt, Wolfgang A. (2011). "On the Olson and the Strong Davenport constants" (PDF). Journal de Théorie des Nombres de Bordeaux. 23 (3): 715–750. doi:10.5802/jtnb.784. S2CID 36303975 – via NUMDAM.
- Nathanson, Melvyn B. (1996). Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics. Vol. 165. Springer-Verlag. ISBN 978-0-387-94655-9. Zbl 0859.11003.
External links
[edit ]- "Davenport constant", Encyclopedia of Mathematics , EMS Press, 2001 [1994]
- Hutzler, Nick. "Davenport Constant". MathWorld .