Jump to content
Wikipedia The Free Encyclopedia

Chen–Ho encoding

From Wikipedia, the free encyclopedia
(Redirected from Hertz encoding)
Memory-efficient binary encoding of decimal digits

Chen–Ho encoding is a memory-efficient alternate system of binary encoding for decimal digits.

The traditional system of binary encoding for decimal digits, known as binary-coded decimal (BCD), uses four bits to encode each digit, resulting in significant wastage of binary data bandwidth (since four bits can store 16 states and are being used to store only 10),[1] even when using packed BCD.

The encoding reduces the storage requirements of two decimal digits (100 states) from 8 to 7 bits, and those of three decimal digits (1000 states) from 12 to 10 bits using only simple Boolean transformations avoiding any complex arithmetic operations like a base conversion.

History

[edit ]

In what appears to have been a multiple discovery, some of the concepts behind what later became known as Chen–Ho encoding were independently developed by Theodore M. Hertz in 1969[2] and by Tien Chi Chen (陳天機) (1928–)[3] [4] [5] [6] in 1971.

Hertz of Rockwell filed a patent for his encoding in 1969, which was granted in 1971.[2]

Chen first discussed his ideas with Irving Tze Ho (何宜慈) (1921–2003)[7] [8] [9] [10] in 1971. Chen and Ho were both working for IBM at the time, albeit in different locations.[11] [12] Chen also consulted with Frank Chin Tung [13] to verify the results of his theories independently.[12] IBM filed a patent in their name in 1973, which was granted in 1974.[14] At least by 1973, Hertz's earlier work must have been known to them, as the patent cites his patent as prior art.[14]

With input from Joseph D. Rutledge and John C. McPherson,[15] the final version of the Chen–Ho encoding was circulated inside IBM in 1974[16] and published in 1975 in the journal Communications of the ACM .[15] [17] This version included several refinements, primarily related to the application of the encoding system. It constitutes a Huffman-like prefix code.

The encoding was referred to as Chen and Ho's scheme in 1975,[18] Chen's encoding in 1982[19] and became known as Chen–Ho encoding or Chen–Ho algorithm since 2000.[17] After having filed a patent for it in 2001,[20] Michael F. Cowlishaw published a further refinement of Chen–Ho encoding known as densely packed decimal (DPD) encoding in IEE Proceedings – Computers and Digital Techniques in 2002.[21] [22] DPD has subsequently been adopted as the decimal encoding used in the IEEE 754-2008 and ISO/IEC/IEEE 60559:2011 floating-point standards.

Application

[edit ]

Chen noted that the digits zero through seven were simply encoded using three binary digits of the corresponding octal group. He also postulated that one could use a flag to identify a different encoding for the digits eight and nine, which would be encoded using a single bit.

In practice, a series of Boolean transformations are applied to the stream of input bits, compressing BCD encoded digits from 12 bits per three digits to 10 bits per three digits. Reversed transformations are used to decode the resulting coded stream to BCD. Equivalent results can also be achieved by the use of a look-up table.

Chen–Ho encoding is limited to encoding sets of three decimal digits into groups of 10 bits (so called declets ).[1] Of the 1024 states possible by using 10 bits, it leaves only 24 states unused[1] (with don't care bits typically set to 0 on write and ignored on read). With only 2.34% wastage it gives a 20% more efficient encoding than BCD with one digit in 4 bits.[12] [17]

Both, Hertz and Chen also proposed similar, but less efficient, encoding schemes to compress sets of two decimal digits (requiring 8 bits in BCD) into groups of 7 bits.[2] [12]

Larger sets of decimal digits could be divided into three- and two-digit groups.[2]

The patents also discuss the possibility to adapt the scheme to digits encoded in any other decimal codes than 8-4-2-1 BCD,[2] like f.e. Excess-3,[2] Excess-6, Jump-at-2, Jump-at-8, Gray, Glixon, O'Brien type-I and Gray–Stibitz code.[a] The same principles could also be applied to other bases.

In 1973, some form of Chen–Ho encoding appears to have been utilized in the address conversion hardware of the optional IBM 7070/7074 emulation feature for the IBM System/370 Model 165 and 370 Model 168 computers.[23] [24]

One prominent application uses a 128-bit register to store 33 decimal digits with a three digit exponent, effectively not less than what could be achieved using binary encoding (whereas BCD encoding would need 144 bits to store the same number of digits).

Encodings for two decimal digits

[edit ]

Hertz encoding

[edit ]
Hertz decimal data encoding for a single heptad (1969 form)[2]
Binary encoding Decimal digits
Code space (128 states) b6 b5 b4 b3 b2 b1 b0 d1 d0 Values encoded Description Occurrences (100 states)
50% (64 states) 0 a b c d e f 0abc 0def (0–7) (0–7) Two lower digits 64% (64 states)
12.5% (16 states) 1 1 0 c d e f 100c 0def (8–9) (0–7) One lower digit,
one higher digit
16% (16 states)
12.5% (16 states) 1 0 1 f a b c 0abc 100f (0–7) (8–9) 16% (16 states)
12.5% (16 states, 4 used) 1 1 1 c x x f 100c 100f (8–9) (8–9) Two higher digits 4% (4 states)
12.5% (16 states, 0 used) 1 0 0 x x x x 0% (0 states)
  • This encoding is not parity-preserving.

Early Chen–Ho encoding, method A

[edit ]
Decimal data encoding for a single heptad (early 1971 form, method A)[12]
Binary encoding Decimal digits
Code space (128 states) b6 b5 b4 b3 b2 b1 b0 d1 d0 Values encoded Description Occurrences (100 states)
50% (64 states) 0 a b c d e f 0abc 0def (0–7) (0–7) Two lower digits 64% (64 states)
25% (32 states, 16 used) 1 0 x[12] (b)[15] c d e f 100c 0def (8–9) (0–7) One lower digit,
one higher digit
16% (16 states)
12.5% (16 states) 1 1 0 f a b c 0abc 100f (0–7) (8–9) 16% (16 states)
12.5% (16 states, 4 used) 1 1 1 c x[12] (a)[15] x[12] (b)[15] f 100c 100f (8–9) (8–9) Two higher digits 4% (4 states)
  • This encoding is not parity-preserving.

Early Chen–Ho encoding, method B

[edit ]
Decimal data encoding for a single heptad (early 1971 form, method B)[12]
Binary encoding Decimal digits
Code space (128 states) b6 b5 b4 b3 b2 b1 b0 d1 d0 Values encoded Description Occurrences (100 states)
50% (64 states) 0 a b c d e f 0abc 0def (0–7) (0–7) Two lower digits 64% (64 states)
12.5% (16 states) 1 0 c 0 d e f 100c 0def (8–9) (0–7) One lower digit,
one higher digit
16% (16 states)
12.5% (16 states, 4 used) 1 0 c 1 x x f 100c 100f (8–9) (8–9) Two higher digits 4% (4 states)
12.5% (16 states) 1 1 f 0 a b c 0abc 100f (0–7) (8–9) One lower digit,
one higher digit
16% (16 states)
12.5% (16 states, 0 used) 1 1 x 1 x x x 0% (0 states)
  • This encoding is not parity-preserving.

Patented and final Chen–Ho encoding

[edit ]
Decimal data encoding for a single heptad (patented 1973 form[14] and final 1975 form[15] )
Binary encoding Decimal digits
Code space (128 states) b6 b5 b4 b3 b2 b1 b0 d1 d0 Values encoded Description Occurrences (100 states)
50% (64 states) 0 a b c d e f 0abc 0def (0–7) (0–7) Two lower digits 64% (64 states)
25.0% (32 states, 16 used) 1 0 x[14] (b)[15] c d e f 100c 0def (8–9) (0–7) One lower digit,
one higher digit
16% (16 states)
12.5% (16 states) 1 1 1 c a b f 0abc 100f (0–7) (8–9) 16% (16 states)
12.5% (16 states, 4 used) 1 1 0 c x[14] (a)[15] x[14] (b)[15] f 100c 100f (8–9) (8–9) Two higher digits 4% (4 states)

Encodings for three decimal digits

[edit ]

Hertz encoding

[edit ]
Hertz decimal data encoding for a single declet (1969 form)[2]
Binary encoding Decimal digits
Code space (1024 states) b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values encoded Description Occurrences (1000 states)
50.0% (512 states) 0 a b c d e f g h i 0abc 0def 0ghi (0–7) (0–7) (0–7) Three lower digits 51.2% (512 states)
37.5% (384 states) 1 0 0 c d e f g h i 100c 0def 0ghi (8–9) (0–7) (0–7) Two lower digits,
one higher digit
38.4% (384 states)
1 0 1 f a b c g h i 0abc 100f 0ghi (0–7) (8–9) (0–7)
1 1 0 i a b c d e f 0abc 0def 100i (0–7) (0–7) (8–9)
9.375% (96 states) 1 1 1 f 0 0 i a b c 0abc 100f 100i (0–7) (8–9) (8–9) One lower digit,
two higher digits
9.6% (96 states)
1 1 1 c 0 1 i d e f 100c 0def 100i (8–9) (0–7) (8–9)
1 1 1 c 1 0 f g h i 100c 100f 0ghi (8–9) (8–9) (0–7)
3.125% (32 states, 8 used) 1 1 1 c 1 1 f (0) (0) i 100c 100f 100i (8–9) (8–9) (8–9) Three higher digits, bits b2 and b1 are don't care 0.8% (8 states)
  • This encoding is not parity-preserving.

Early Chen–Ho encoding

[edit ]
Decimal data encoding for a single declet (early 1971 form)[12]
Binary encoding Decimal digits
Code space (1024 states) b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values encoded Description Occurrences (1000 states)
50.0% (512 states) 0 a b c d e f g h i 0abc 0def 0ghi (0–7) (0–7) (0–7) Three lower digits 51.2% (512 states)
37.5% (384 states) 1 0 0 c d e f g h i 100c 0def 0ghi (8–9) (0–7) (0–7) Two lower digits,
one higher digit
38.4% (384 states)
1 0 1 f g h i a b c 0abc 100f 0ghi (0–7) (8–9) (0–7)
1 1 0 i a b c d e f 0abc 0def 100i (0–7) (0–7) (8–9)
9.375% (96 states) 1 1 1 0 0 f i a b c 0abc 100f 100i (0–7) (8–9) (8–9) One lower digit,
two higher digits
9.6% (96 states)
1 1 1 0 1 i c d e f 100c 0def 100i (8–9) (0–7) (8–9)
1 1 1 1 0 c f g h i 100c 100f 0ghi (8–9) (8–9) (0–7)
3.125% (32 states, 8 used) 1 1 1 1 1 c f i (0) (0) 100c 100f 100i (8–9) (8–9) (8–9) Three higher digits, bits b1 and b0 are don't care 0.8% (8 states)
  • This encoding is not parity-preserving.

Patented Chen–Ho encoding

[edit ]
Decimal data encoding for a single declet (patented 1973 form)[14]
Binary encoding Decimal digits
Code space (1024 states) b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values encoded Description Occurrences (1000 states)
50.0% (512 states) 0 a b d e g h c f i 0abc 0def 0ghi (0–7) (0–7) (0–7) Three lower digits 51.2% (512 states)
37.5% (384 states) 1 0 0 d e g h c f i 100c 0def 0ghi (8–9) (0–7) (0–7) Two lower digits,
one higher digit
38.4% (384 states)
1 0 1 a b g h c f i 0abc 100f 0ghi (0–7) (8–9) (0–7)
1 1 0 d e a b c f i 0abc 0def 100i (0–7) (0–7) (8–9)
9.375% (96 states) 1 1 1 1 0 a b c f i 0abc 100f 100i (0–7) (8–9) (8–9) One lower digit,
two higher digits
9.6% (96 states)
1 1 1 0 1 d e c f i 100c 0def 100i (8–9) (0–7) (8–9)
1 1 1 0 0 g h c f i 100c 100f 0ghi (8–9) (8–9) (0–7)
3.125% (32 states, 8 used) 1 1 1 1 1 (0) (0) c f i 100c 100f 100i (8–9) (8–9) (8–9) Three higher digits, bits b4 and b3 are don't care 0.8% (8 states)
  • This encoding is not parity-preserving.[14]

Final Chen–Ho encoding

[edit ]
Chen-Ho decimal data encoding for a single declet (final 1975 form)[15] [17]
Binary encoding Decimal digits
Code space (1024 states) b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d2 d1 d0 Values encoded Description Occurrences (1000 states)
50.0% (512 states) 0 a b c d e f g h i 0abc 0def 0ghi (0–7) (0–7) (0–7) Three lower digits 51.2% (512 states)
37.5% (384 states) 1 0 0 c d e f g h i 100c 0def 0ghi (8–9) (0–7) (0–7) Two lower digits,
one higher digit
38.4% (384 states)
1 0 1 c a b f g h i 0abc 100f 0ghi (0–7) (8–9) (0–7)
1 1 0 c d e f a b i 0abc 0def 100i (0–7) (0–7) (8–9)
9.375% (96 states) 1 1 1 c 0 0 f a b i 0abc 100f 100i (0–7) (8–9) (8–9) One lower digit,
two higher digits
9.6% (96 states)
1 1 1 c 0 1 f d e i 100c 0def 100i (8–9) (0–7) (8–9)
1 1 1 c 1 0 f g h i 100c 100f 0ghi (8–9) (8–9) (0–7)
3.125% (32 states, 8 used) 1 1 1 c 1 1 f (0) (0) i 100c 100f 100i (8–9) (8–9) (8–9) Three higher digits, bits b2 and b1 are don't care 0.8% (8 states)
  • This encoding is not parity-preserving.[15]

Storage efficiency

[edit ]
Storage efficiency
BCD Necessary bits Bit difference
Digits States Bits Binary code space Binary encoding [A] 2-digit encoding [B] 3-digit encoding [C] Mixed encoding Mixed vs. Binary Mixed vs. BCD
1 10 4 16 4 (7) (10) 4 ×ばつA] 0 0
2 100 8 128 7 7 (10) 7 ×ばつB] 0 −1
3 1000 12 1024 10 (14) 10 10 ×ばつC] 0 −2
4 10000 16 16384 14 14 (20) 14 ×ばつB] 0 −2
5 100000 20 131072 17 (21) (20) 17 ×ばつB] 0 −3
6 1000000 24 1048576 20 21 20 20 ×ばつC] 0 −4
7 10000000 28 16777216 24 (28) (30) 24 ×ばつA] 0 −4
8 100000000 32 134217728 27 28 (30) 27 ×ばつB] 0 −5
9 1000000000 36 1073741824 30 (35) 30 30 ×ばつC] 0 −6
10 10000000000 40 17179869184 34 35 (40) 34 ×ばつA] 0 −6
11 100000000000 44 137438953472 37 (42) (40) 37 ×ばつB] 0 −7
12 1000000000000 48 1099511627776 40 42 40 40 ×ばつC] 0 −8
13 10000000000000 52 17592186044416 44 (49) (50) 44 ×ばつA] 0 −8
14 100000000000000 56 140737488355328 47 49 (50) 47 ×ばつB] 0 −9
15 1000000000000000 60 1125899906842624 50 (56) 50 50 ×ばつC] 0 −10
16 10000000000000000 64 18014398509481984 54 56 (60) 54 ×ばつA] 0 −10
17 100000000000000000 68 144115188075855872 57 (63) (60) 57 ×ばつB] 0 −11
18 1000000000000000000 72 1152921504606846976 60 63 60 60 ×ばつC] 0 −12
19 10000000000000000000 76 18446744073709551616 64 (70) (70) 64 ×ばつA] 0 −12
20 ... 80 ... 67 70 (70) 67 ×ばつB] 0 −13
21 ... 84 ... 70 (77) 70 70 ×ばつC] 0 −14
22 ... 88 ... 74 77 (80) 74 ×ばつA] 0 −14
23 ... 92 ... 77 (84) (80) 77 ×ばつB] 0 −15
24 ... 96 ... 80 84 80 80 ×ばつC] 0 −16
25 ... 100 ... 84 (91) (90) 84 ×ばつA] 0 −16
26 ... 104 ... 87 91 (90) 87 ×ばつB] 0 −17
27 ... 108 ... 90 (98) 90 90 ×ばつC] 0 −18
28 ... 112 ... 94 98 (100) 94 ×ばつA] 0 −18
29 ... 116 ... 97 (105) (100) 97 ×ばつB] 0 −19
30 ... 120 ... 100 105 100 100 ×ばつC] 0 −20
31 ... 124 ... 103 (112) (110) 104 ×ばつA] +1 −20
32 ... 128 ... 107 112 (110) 107 ×ばつB] 0 −21
33 ... 132 ... 110 (119) 110 110 ×ばつC] 0 −22
34 ... 136 ... 113 119 (120) 114 ×ばつA] +1 −22
35 ... 140 ... 117 (126) (120) 117 ×ばつB] 0 −23
36 ... 144 ... 120 126 120 120 ×ばつC] 0 −24
37 ... 148 ... 123 (133) (130) 124 ×ばつA] +1 −24
38 ... 152 ... 127 133 (130) 127 ×ばつB] 0 −25
... ... ... ... ... ... ... ... ... ...

See also

[edit ]

Notes

[edit ]
  1. ^ Some 4-bit decimal codes are particularly well suited as alternatives to the 8-4-2-1 BCD code: Jump-at-8 code uses the same values for the ordered states 0 to 7, whereas in the Gray BCD and Glixon codes the values for the states 0 to 7 are still from the same set, but ordered differently (which, however, is transparent for the Hertz, Chen–Ho or densely packed decimal (DPD) encodings, as they pass through the bits unaltered). In these four codes, the most-significant bit can be used as a flag denoting "large" values. For the two "large" values, all but one bits remain static (the two middle bits are always zero for 8-4-2-1 and one for Jump-at-8 code, whilst for Gray BCD code one bit is set and the other cleared, whereas for Glixon code the two lower bits are always zero and one bit inverted, thus the two "large" values being transparently swapped), requiring only minor adaptations in the encoding. Three other codes can be conveniently split into groups of eight and two states as well, containing values from two ranges of consecutive bit patterns. In the case of the and Excess-6 BCD and Jump-at-2 codes, the most-significant bit can still be used to distinguish between the two groups, however, compared to the Jump-at-8 code, the group of small values now contains only two states and the larger group contains the eight larger values. In the case of the O'Brien type-I and Gray–Stibitz code, the next-most significant bit can serve as a flag bit instead, with the remaining bits again forming two groups of consecutive values. Therefore, these differences remain transparent for the encoding.

References

[edit ]
  1. ^ a b c Muller, Jean-Michel; Brisebarre, Nicolas; de Dinechin, Florent; Jeannerod, Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé, Damien; Torres, Serge (2010). Handbook of Floating-Point Arithmetic (1 ed.). Birkhäuser. doi:10.1007/978-0-8176-4705-6. ISBN 978-0-8176-4704-9. LCCN 2009939668.
  2. ^ a b c d e f g h Hertz, Theodore M. (1971年11月02日) [1969年12月15日]. "System for the compact storage of decimal numbers" (Patent). Whittier, California, USA: North American Rockwell Corporation. US Patent US3618047A. Retrieved 2018年07月18日. (8 pages) [1] [2] (NB. This expired patent discusses a coding system very similar to Chen-Ho, also cited as prior art in the Chen–Ho patent.)
  3. ^ "We hear that..." Physics Today . Vol. 12, no. 2. American Institute of Physics (AIP). 1959. p. 62. doi:10.1063/1.3060696. ISSN 0031-9228. Archived from the original on 2020年06月24日. Retrieved 2020年06月24日. (1 page)
  4. ^ Parker, David (2003). "Honorary Fellow - A Citation - Professor Chen Tien Chi" (PDF). List of Honorary Fellows. The Chinese University of Hong Kong (CUHK). Archived (PDF) from the original on 2014年12月25日. Retrieved 2020年06月24日. (2 pages)
  5. ^ "CHEN Tien Chi". The Chinese University of Hong Kong (CUHK). 2013年01月12日. Archived from the original on 2015年10月23日. Retrieved 2016年02月07日.
  6. ^ Wong, Andrew W. F. (2014年08月15日) [2014年07月04日, 2014年06月23日, 2013年09月16日, 2007年07月16日, 2007年06月07日, 2007年06月04日, 2007年05月20日, 2007年02月16日]. 陳天機 Chen Tien Chi: 如夢令 Ru Meng Ling (As If Dreaming). Classical Chinese Poems in English (in Chinese and English). Translated by Hongfa (宏發), Huang (黃). Archived from the original on 2020年06月25日. Retrieved 2020年06月25日.
  7. ^ "Scientist Given Task To Set Up Science-Oriented Industrial Park". Science Bulletin . Vol. 11, no. 2. Taipei, Taiwan: National Science Council. 1979年02月01日. p. 1. ISSN 1607-3509. OCLC 1658005. Archived from the original on 2020年06月25日. Retrieved 2020年06月24日. (1 page) [3]
  8. ^ Tseng, Li-Ling (1988年04月01日). "High-Tech Leadership: Irving T. Ho". Taiwan Info. Archived from the original on 2016年02月08日. Retrieved 2016年02月08日. [4]
  9. ^ "Taiwan's Silicon Valley: The Evolution of Hsinchu Industrial Park". Freeman Spogli Institute for International Studies . Stanford University, Stanford, California, USA. 2000年01月11日. Archived from the original on 2020年06月26日. Retrieved 2017年05月02日.
  10. ^ "Irving T. Ho". San Jose Mercury News . 2003年04月26日. Archived from the original on 2020年06月25日. Retrieved 2020年06月25日.
  11. ^ Chen, Tien Chi (1971年03月12日). Decimal-binary integer conversion scheme (Internal memo to Irving Tze Ho). IBM San Jose Research Laboratory, San Jose, California, USA: IBM.
  12. ^ a b c d e f g h i j Chen, Tien Chi (1971年03月29日). Decimal Number Compression (PDF) (Internal memo to Irving Tze Ho). IBM San Jose Research Laboratory, San Jose, California, USA: IBM. pp. 1–4. Archived (PDF) from the original on 2012年10月17日. Retrieved 2016年02月07日. (4 pages)
  13. ^ IBM资深专家Frank Tung博士8月4日来我校演讲 [IBM senior expert Dr. Frank Tung came to our school on 4 August to give a speech] (in Chinese and English). Guangzhou, China: South China University of Technology (SCUT). 2004年08月04日. Archived from the original on 2004年12月08日. Retrieved 2016年02月06日.
  14. ^ a b c d e f g h i Chen, Tien Chi; Ho, Irving Tze (1974年10月15日) [1973年06月18日]. Written at San Jose, California, USA & Poughkeepsie, New York, USA. "Binary coded decimal conversion apparatus" (Patent). Armonk, New York, USA: International Business Machines Corporation (IBM). US Patent US3842414A. Retrieved 2018年07月18日. (14 pages) [5] [6] (NB. This expired patent is about the Chen–Ho algorithm.)
  15. ^ a b c d e f g h i j k l Chen, Tien Chi; Ho, Irving Tze (January 1975) [April 1974]. "Storage-Efficient Representation of Decimal Data". Communications of the ACM . 18 (1). IBM San Jose Research Laboratory, San Jose, California, USA & IBM Systems Products Division, Poughkeepsie/East Fishkill, New York, USA: Association for Computing Machinery: 49–52. doi:10.1145/360569.360660 . ISSN 0001-0782. S2CID 14301378. (4 pages)
  16. ^ Chen, Tien Chi; Ho, Irving Tze (1974年06月25日). "Storage-Efficient Representation of Decimal Data". Research Report RJ 1420 (Technical report). IBM San Jose Research Laboratory, San Jose, California, USA: IBM.
  17. ^ a b c d Cowlishaw, Michael Frederic (2014) [June 2000]. "A Summary of Chen-Ho Decimal Data encoding". IBM. Archived from the original on 2015年09月24日. Retrieved 2016年02月07日.
  18. ^ Smith, Alan Jay (August 1975) [April 1975]. "Comments on a paper by T. C. Chen and I. T. Ho" . Communications of the ACM . 18 (8). University of California, Berkeley, California, USA: 463. doi:10.1145/360933.360986. eISSN 1557-7317. ISSN 0001-0782. S2CID 20910959. CODEN CACMA2. Archived from the original on 2020年06月03日. Retrieved 2020年06月03日. (1 page) (NB. A publication also discussing Chen–Ho alternatives and variations.)
  19. ^ Sacks-Davis, Ron (1982年11月01日) [January 1982]. "Applications of Redundant Number Representations to Decimal Arithmetic". The Computer Journal . 25 (4). Department of Computer Science, Monash University, Clayton, Victoria, Australia: Wiley Heyden Ltd: 471–477. doi:10.1093/comjnl/25.4.471 . (7 pages)
  20. ^ Cowlishaw, Michael Frederic (2003年02月25日) [2002年05月20日, 2001年01月27日]. Written at Coventry, UK. "Decimal to binary coder/decoder" (Patent). Armonk, New York, USA: International Business Machines Corporation (IBM). US Patent US6525679B1. Retrieved 2018年07月18日 (6 pages) [7] and Cowlishaw, Michael Frederic (2007年11月07日) [2004年01月14日, 2002年08月14日, 2001年09月24日, 2001年01月27日]. Written at Winchester, Hampshire, UK. "Decimal to binary coder/decoder" (Patent). Armonk, New York, USA: International Business Machines Corporation (IBM). European Patent EP1231716A2. Retrieved 2018年07月18日. (9 pages) [8] [9] [10] (NB. This patent about DPD also discusses the Chen–Ho algorithm.)
  21. ^ Cowlishaw, Michael Frederic (2002年08月07日) [May 2002]. "Densely Packed Decimal Encoding". IEE Proceedings - Computers and Digital Techniques . 149 (3). London, UK: Institution of Electrical Engineers (IEE): 102–104. doi:10.1049/ip-cdt:20020407 (inactive 2025年07月11日). ISSN 1350-2387. Archived from the original on 2017年05月20日. Retrieved 2016年02月07日.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link) (3 pages)
  22. ^ Cowlishaw, Michael Frederic (2007年02月13日) [2000年10月03日]. "A Summary of Densely Packed Decimal encoding". IBM. Archived from the original on 2015年09月24日. Retrieved 2016年02月07日.
  23. ^ Savard, John J. G. (2018) [2007]. "Chen-Ho Encoding and Densely Packed Decimal". quadibloc. Archived from the original on 2018年07月03日. Retrieved 2018年07月16日.
  24. ^ 7070/7074 Compatibility Feature for IBM System/370 Models 165, 165 II, and 168 (PDF) (2 ed.). IBM. June 1973 [1970]. GA22-6958-1 (File No. 5/370-13). Archived (PDF) from the original on 2018年07月22日. Retrieved 2018年07月21日. (31+5 pages)

Further reading

[edit ]

AltStyle によって変換されたページ (->オリジナル) /