Conjugate transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an {\displaystyle m\times n} complex matrix {\displaystyle \mathbf {A} } is an {\displaystyle n\times m} matrix obtained by transposing {\displaystyle \mathbf {A} } and applying complex conjugation to each entry (the complex conjugate of {\displaystyle a+ib} being {\displaystyle a-ib}, for real numbers {\displaystyle a} and {\displaystyle b}). There are several notations, such as {\displaystyle \mathbf {A} ^{\mathrm {H} }} or {\displaystyle \mathbf {A} ^{*}},[1] {\displaystyle \mathbf {A} '},[2] or (often in physics) {\displaystyle \mathbf {A} ^{\dagger }}.
For real matrices, the conjugate transpose is just the transpose, {\displaystyle \mathbf {A} ^{\mathrm {H} }=\mathbf {A} ^{\operatorname {T} }}.
Definition
[edit ]The conjugate transpose of an {\displaystyle m\times n} matrix {\displaystyle \mathbf {A} } is formally defined by
where the subscript {\displaystyle ij} denotes the {\displaystyle (i,j)}-th entry (matrix element), for {\displaystyle 1\leq i\leq n} and {\displaystyle 1\leq j\leq m}, and the overbar denotes a scalar complex conjugate.
This definition can also be written as
- {\displaystyle \mathbf {A} ^{\mathrm {H} }=\left({\overline {\mathbf {A} }}\right)^{\operatorname {T} }={\overline {\mathbf {A} ^{\operatorname {T} }}}}
where {\displaystyle \mathbf {A} ^{\operatorname {T} }} denotes the transpose and {\displaystyle {\overline {\mathbf {A} }}} denotes the matrix with complex conjugated entries.
Other names for the conjugate transpose of a matrix are Hermitian transpose, Hermitian conjugate, adjoint matrix or transjugate. The conjugate transpose of a matrix {\displaystyle \mathbf {A} } can be denoted by any of these symbols:
- {\displaystyle \mathbf {A} ^{*}}, commonly used in linear algebra
- {\displaystyle \mathbf {A} ^{\mathrm {H} }}, commonly used in linear algebra
- {\displaystyle \mathbf {A} ^{\dagger }} (sometimes pronounced as A dagger ), commonly used in quantum mechanics
- {\displaystyle \mathbf {A} ^{+}}, although this symbol is more commonly used for the Moore–Penrose pseudoinverse
In some contexts, {\displaystyle \mathbf {A} ^{*}} denotes the matrix with only complex conjugated entries and no transposition.
Example
[edit ]Suppose we want to calculate the conjugate transpose of the following matrix {\displaystyle \mathbf {A} }.
- {\displaystyle \mathbf {A} ={\begin{bmatrix}1&-2-i&5\1円+i&i&4-2i\end{bmatrix}}}
We first transpose the matrix:
- {\displaystyle \mathbf {A} ^{\operatorname {T} }={\begin{bmatrix}1&1+i\\-2-i&i\5円&4-2i\end{bmatrix}}}
Then we conjugate every entry of the matrix:
- {\displaystyle \mathbf {A} ^{\mathrm {H} }={\begin{bmatrix}1&1-i\\-2+i&-i\5円&4+2i\end{bmatrix}}}
Basic remarks
[edit ]A square matrix {\displaystyle \mathbf {A} } with entries {\displaystyle a_{ij}} is called
- Hermitian or self-adjoint if {\displaystyle \mathbf {A} =\mathbf {A} ^{\mathrm {H} }}; i.e., {\displaystyle a_{ij}={\overline {a_{ji}}}}.
- Skew Hermitian or antihermitian if {\displaystyle \mathbf {A} =-\mathbf {A} ^{\mathrm {H} }}; i.e., {\displaystyle a_{ij}=-{\overline {a_{ji}}}}.
- Normal if {\displaystyle \mathbf {A} ^{\mathrm {H} }\mathbf {A} =\mathbf {A} \mathbf {A} ^{\mathrm {H} }}.
- Unitary if {\displaystyle \mathbf {A} ^{\mathrm {H} }=\mathbf {A} ^{-1}}, equivalently {\displaystyle \mathbf {A} \mathbf {A} ^{\mathrm {H} }={\boldsymbol {I}}}, equivalently {\displaystyle \mathbf {A} ^{\mathrm {H} }\mathbf {A} ={\boldsymbol {I}}}.
Even if {\displaystyle \mathbf {A} } is not square, the two matrices {\displaystyle \mathbf {A} ^{\mathrm {H} }\mathbf {A} } and {\displaystyle \mathbf {A} \mathbf {A} ^{\mathrm {H} }} are both Hermitian and in fact positive semi-definite matrices.
The conjugate transpose "adjoint" matrix {\displaystyle \mathbf {A} ^{\mathrm {H} }} should not be confused with the adjugate, {\displaystyle \operatorname {adj} (\mathbf {A} )}, which is also sometimes called adjoint.
The conjugate transpose of a matrix {\displaystyle \mathbf {A} } with real entries reduces to the transpose of {\displaystyle \mathbf {A} }, as the conjugate of a real number is the number itself.
The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication:[3]
- {\displaystyle a+ib\equiv {\begin{bmatrix}a&-b\\b&a\end{bmatrix}}.}
That is, denoting each complex number {\displaystyle z} by the real {\displaystyle 2\times 2} matrix of the linear transformation on the Argand diagram (viewed as the real vector space {\displaystyle \mathbb {R} ^{2}}), affected by complex {\displaystyle z}-multiplication on {\displaystyle \mathbb {C} }.
Thus, an {\displaystyle m\times n} matrix of complex numbers could be well represented by a {\displaystyle 2m\times 2n} matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an {\displaystyle n\times m} matrix made up of complex numbers.
For an explanation of the notation used here, we begin by representing complex numbers {\displaystyle e^{i\theta }} as the rotation matrix, that is,
{\displaystyle e^{i\theta }={\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}=\cos \theta {\begin{pmatrix}1&0\0円&1\end{pmatrix}}+\sin \theta {\begin{pmatrix}0&-1\1円&0\end{pmatrix}}.}
Since {\displaystyle e^{i\theta }=\cos \theta +i\sin \theta }, we are led to the matrix representations of the unit numbers as
{\displaystyle 1={\begin{pmatrix}1&0\0円&1\end{pmatrix}},\quad i={\begin{pmatrix}0&-1\1円&0\end{pmatrix}}.}
A general complex number {\displaystyle z=x+iy} is then represented as {\displaystyle z={\begin{pmatrix}x&-y\\y&x\end{pmatrix}}.}
The complex conjugate operation, where i→−i, is seen to be just the matrix transpose.
Properties
[edit ]- {\displaystyle (\mathbf {A} +{\boldsymbol {B}})^{\mathrm {H} }=\mathbf {A} ^{\mathrm {H} }+{\boldsymbol {B}}^{\mathrm {H} }} for any two matrices {\displaystyle \mathbf {A} } and {\displaystyle {\boldsymbol {B}}} of the same dimensions.
- {\displaystyle (z\mathbf {A} )^{\mathrm {H} }={\overline {z}}\mathbf {A} ^{\mathrm {H} }} for any complex number {\displaystyle z} and any {\displaystyle m\times n} matrix {\displaystyle \mathbf {A} }.
- {\displaystyle (\mathbf {A} {\boldsymbol {B}})^{\mathrm {H} }={\boldsymbol {B}}^{\mathrm {H} }\mathbf {A} ^{\mathrm {H} }} for any {\displaystyle m\times n} matrix {\displaystyle \mathbf {A} } and any {\displaystyle n\times p} matrix {\displaystyle {\boldsymbol {B}}}. Note that the order of the factors is reversed.[1]
- {\displaystyle \left(\mathbf {A} ^{\mathrm {H} }\right)^{\mathrm {H} }=\mathbf {A} } for any {\displaystyle m\times n} matrix {\displaystyle \mathbf {A} }, i.e. Hermitian transposition is an involution.
- If {\displaystyle \mathbf {A} } is a square matrix, then {\displaystyle \det \left(\mathbf {A} ^{\mathrm {H} }\right)={\overline {\det \left(\mathbf {A} \right)}}} where {\displaystyle \operatorname {det} (A)} denotes the determinant of {\displaystyle \mathbf {A} } .
- If {\displaystyle \mathbf {A} } is a square matrix, then {\displaystyle \operatorname {tr} \left(\mathbf {A} ^{\mathrm {H} }\right)={\overline {\operatorname {tr} (\mathbf {A} )}}} where {\displaystyle \operatorname {tr} (A)} denotes the trace of {\displaystyle \mathbf {A} }.
- {\displaystyle \mathbf {A} } is invertible if and only if {\displaystyle \mathbf {A} ^{\mathrm {H} }} is invertible, and in that case {\displaystyle \left(\mathbf {A} ^{\mathrm {H} }\right)^{-1}=\left(\mathbf {A} ^{-1}\right)^{\mathrm {H} }}.
- The eigenvalues of {\displaystyle \mathbf {A} ^{\mathrm {H} }} are the complex conjugates of the eigenvalues of {\displaystyle \mathbf {A} }.
- {\displaystyle \left\langle \mathbf {A} x,y\right\rangle _{m}=\left\langle x,\mathbf {A} ^{\mathrm {H} }y\right\rangle _{n}} for any {\displaystyle m\times n} matrix {\displaystyle \mathbf {A} }, any vector in {\displaystyle x\in \mathbb {C} ^{n}} and any vector {\displaystyle y\in \mathbb {C} ^{m}}. Here, {\displaystyle \langle \cdot ,\cdot \rangle _{m}} denotes the standard complex inner product on {\displaystyle \mathbb {C} ^{m}}, and similarly for {\displaystyle \langle \cdot ,\cdot \rangle _{n}}.
Generalizations
[edit ]The last property given above shows that if one views {\displaystyle \mathbf {A} } as a linear transformation from Hilbert space {\displaystyle \mathbb {C} ^{n}} to {\displaystyle \mathbb {C} ^{m},} then the matrix {\displaystyle \mathbf {A} ^{\mathrm {H} }} corresponds to the adjoint operator of {\displaystyle \mathbf {A} }. The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.
Another generalization is available: suppose {\displaystyle A} is a linear map from a complex vector space {\displaystyle V} to another, {\displaystyle W}, then the complex conjugate linear map as well as the transposed linear map are defined, and we may thus take the conjugate transpose of {\displaystyle A} to be the complex conjugate of the transpose of {\displaystyle A}. It maps the conjugate dual of {\displaystyle W} to the conjugate dual of {\displaystyle V}.
See also
[edit ]References
[edit ]- ^ a b Weisstein, Eric W. "Conjugate Transpose". mathworld.wolfram.com. Retrieved 2020年09月08日.
- ^ H. W. Turnbull, A. C. Aitken, "An Introduction to the Theory of Canonical Matrices," 1932.
- ^ Chasnov, Jeffrey R. (4 February 2022). "1.6: Matrix Representation of Complex Numbers". Applied Linear Algebra and Differential Equations. LibreTexts.
External links
[edit ]- "Adjoint matrix", Encyclopedia of Mathematics , EMS Press, 2001 [1994]