Fibonacci polynomials
In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.
Definition
[edit ]These Fibonacci polynomials are defined by a recurrence relation:[1]
- {\displaystyle F_{n}(x)={\begin{cases}0,&{\mbox{if }}n=0\1,円&{\mbox{if }}n=1\\xF_{n-1}(x)+F_{n-2}(x),&{\mbox{if }}n\geq 2\end{cases}}}
The Lucas polynomials use the same recurrence with different starting values:[2]
- {\displaystyle L_{n}(x)={\begin{cases}2,&{\mbox{if }}n=0\\x,&{\mbox{if }}n=1\\xL_{n-1}(x)+L_{n-2}(x),&{\mbox{if }}n\geq 2.\end{cases}}}
They can be defined for negative indices by[3]
- {\displaystyle F_{-n}(x)=(-1)^{n-1}F_{n}(x),}
- {\displaystyle L_{-n}(x)=(-1)^{n}L_{n}(x).}
The Fibonacci polynomials form a sequence of orthogonal polynomials with {\displaystyle A_{n}=C_{n}=1} and {\displaystyle B_{n}=0}.
Examples
[edit ]The first few Fibonacci polynomials are:
- {\displaystyle F_{0}(x)=0,円}
- {\displaystyle F_{1}(x)=1,円}
- {\displaystyle F_{2}(x)=x,円}
- {\displaystyle F_{3}(x)=x^{2}+1,円}
- {\displaystyle F_{4}(x)=x^{3}+2x,円}
- {\displaystyle F_{5}(x)=x^{4}+3x^{2}+1,円}
- {\displaystyle F_{6}(x)=x^{5}+4x^{3}+3x,円}
The first few Lucas polynomials are:
- {\displaystyle L_{0}(x)=2,円}
- {\displaystyle L_{1}(x)=x,円}
- {\displaystyle L_{2}(x)=x^{2}+2,円}
- {\displaystyle L_{3}(x)=x^{3}+3x,円}
- {\displaystyle L_{4}(x)=x^{4}+4x^{2}+2,円}
- {\displaystyle L_{5}(x)=x^{5}+5x^{3}+5x,円}
- {\displaystyle L_{6}(x)=x^{6}+6x^{4}+9x^{2}+2.,円}
Properties
[edit ]- The degree of Fn is n − 1 and the degree of Ln is n.
- The Fibonacci and Lucas numbers are recovered by evaluating the polynomials at x = 1; Pell numbers are recovered by evaluating Fn at x = 2.
- The ordinary generating functions for the sequences are:[4]
- {\displaystyle \sum _{n=0}^{\infty }F_{n}(x)t^{n}={\frac {t}{1-xt-t^{2}}}}
- {\displaystyle \sum _{n=0}^{\infty }L_{n}(x)t^{n}={\frac {2-xt}{1-xt-t^{2}}}.}
- The polynomials can be expressed in terms of Lucas sequences as
- {\displaystyle F_{n}(x)=U_{n}(x,-1),,円}
- {\displaystyle L_{n}(x)=V_{n}(x,-1).,円}
- They can also be expressed in terms of Chebyshev polynomials {\displaystyle {\mathcal {T}}_{n}(x)} and {\displaystyle {\mathcal {U}}_{n}(x)} as
- {\displaystyle F_{n}(x)=i^{n-1}\cdot {\mathcal {U}}_{n-1}({\tfrac {-ix}{2}}),,円}
- {\displaystyle L_{n}(x)=2\cdot i^{n}\cdot {\mathcal {T}}_{n}({\tfrac {-ix}{2}}),,円}
- where {\displaystyle i} is the imaginary unit.
Identities
[edit ]As particular cases of Lucas sequences, Fibonacci polynomials satisfy a number of identities, such as[3]
- {\displaystyle F_{m+n}(x)=F_{m+1}(x)F_{n}(x)+F_{m}(x)F_{n-1}(x),円}
- {\displaystyle L_{m+n}(x)=L_{m}(x)L_{n}(x)-(-1)^{n}L_{m-n}(x),円}
- {\displaystyle F_{n+1}(x)F_{n-1}(x)-F_{n}(x)^{2}=(-1)^{n},円}
- {\displaystyle F_{2n}(x)=F_{n}(x)L_{n}(x).,円}
Closed form expressions, similar to Binet's formula are:[3]
- {\displaystyle F_{n}(x)={\frac {\alpha (x)^{n}-\beta (x)^{n}}{\alpha (x)-\beta (x)}},,円L_{n}(x)=\alpha (x)^{n}+\beta (x)^{n},}
where
- {\displaystyle \alpha (x)={\frac {x+{\sqrt {x^{2}+4}}}{2}},,円\beta (x)={\frac {x-{\sqrt {x^{2}+4}}}{2}}}
are the solutions (in t) of
- {\displaystyle t^{2}-xt-1=0.,円}
For Lucas Polynomials n > 0, we have
- {\displaystyle L_{n}(x)=\sum _{k=0}^{\lfloor n/2\rfloor }{\frac {n}{n-k}}{\binom {n-k}{k}}x^{n-2k}.}
A relationship between the Fibonacci polynomials and the standard basis polynomials is given by[5]
- {\displaystyle x^{n}=F_{n+1}(x)+\sum _{k=1}^{\lfloor n/2\rfloor }(-1)^{k}\left[{\binom {n}{k}}-{\binom {n}{k-1}}\right]F_{n+1-2k}(x).}
For example,
- {\displaystyle x^{4}=F_{5}(x)-3F_{3}(x)+2F_{1}(x),円}
- {\displaystyle x^{5}=F_{6}(x)-4F_{4}(x)+5F_{2}(x),円}
- {\displaystyle x^{6}=F_{7}(x)-5F_{5}(x)+9F_{3}(x)-5F_{1}(x),円}
- {\displaystyle x^{7}=F_{8}(x)-6F_{6}(x)+14F_{4}(x)-14F_{2}(x),円}
Combinatorial interpretation
[edit ]If F(n,k) is the coefficient of xk in Fn(x), namely
- {\displaystyle F_{n}(x)=\sum _{k=0}^{n}F(n,k)x^{k},,円}
then F(n,k) is the number of ways an n−1 by 1 rectangle can be tiled with 2 by 1 dominoes and 1 by 1 squares so that exactly k squares are used.[1] Equivalently, F(n,k) is the number of ways of writing n−1 as an ordered sum involving only 1 and 2, so that 1 is used exactly k times. For example F(6,3)=4 and 5 can be written in 4 ways, 1+1+1+2, 1+1+2+1, 1+2+1+1, 2+1+1+1, as a sum involving only 1 and 2 with 1 used 3 times. By counting the number of times 1 and 2 are both used in such a sum, it is evident that {\displaystyle F(n,k)={\begin{cases}\displaystyle {\binom {{\frac {1}{2}}(n+k-1)}{k}}&{\text{if }}n\not \equiv k{\pmod {2}},\\[12pt]0&{\text{else}}.\end{cases}}}
This gives a way of reading the coefficients from Pascal's triangle as shown on the right.
References
[edit ]- ^ a b Benjamin & Quinn p. 141
- ^ Benjamin & Quinn p. 142
- ^ a b c Springer
- ^ Weisstein, Eric W. "Fibonacci Polynomial". MathWorld .
- ^ A proof starts from page 5 in Algebra Solutions Packet (no author).
- Benjamin, Arthur T.; Quinn, Jennifer J. (2003). "Fibonacci and Lucas Polynomial". Proofs that Really Count: The Art of Combinatorial Proof. Dolciani Mathematical Expositions. Vol. 27. Mathematical Association of America. p. 141. ISBN 978-0-88385-333-7.
- Philippou, Andreas N. (2001) [1994], "Fibonacci polynomials", Encyclopedia of Mathematics , EMS Press
- Philippou, Andreas N. (2001) [1994], "Lucas polynomials", Encyclopedia of Mathematics , EMS Press
- Weisstein, Eric W. "Lucas Polynomial". MathWorld .
- Jin, Z. On the Lucas polynomials and some of their new identities. Advances in Differential Equations 2018, 126 (2018). https://doi.org/10.1186/s13662-018-1527-9
Further reading
[edit ]- Hoggatt, V. E.; Bicknell, Marjorie (1973). "Roots of Fibonacci polynomials". Fibonacci Quarterly . 11: 271–274. ISSN 0015-0517. MR 0332645.
- Hoggatt, V. E.; Long, Calvin T. (1974). "Divisibility properties of generalized Fibonacci Polynomials". Fibonacci Quarterly . 12: 113. MR 0352034.
- Ricci, Paolo Emilio (1995). "Generalized Lucas polynomials and Fibonacci polynomials". Rivista di Matematica della Università di Parma. V. Ser. 4: 137–146. MR 1395332.
- Yuan, Yi; Zhang, Wenpeng (2002). "Some identities involving the Fibonacci Polynomials". Fibonacci Quarterly. 40 (4): 314. MR 1920571.
- Cigler, Johann (2003). "q-Fibonacci polynomials". Fibonacci Quarterly (41): 31–40. MR 1962279.