Jump to content
Wikipedia The Free Encyclopedia

Conic optimization

From Wikipedia, the free encyclopedia
(Redirected from Conic programming)
Subfield of convex optimization
This article includes a list of general references, but it lacks sufficient corresponding inline citations . Please help to improve this article by introducing more precise citations. (October 2011) (Learn how and when to remove this message)

Conic optimization is a subfield of convex optimization that studies problems consisting of minimizing a convex function over the intersection of an affine subspace and a convex cone.

The class of conic optimization problems includes some of the most well known classes of convex optimization problems, namely linear and semidefinite programming.

Definition

[edit ]

Given a real vector space X, a convex, real-valued function

f : C R {\displaystyle f:C\to \mathbb {R} } {\displaystyle f:C\to \mathbb {R} }

defined on a convex cone C X {\displaystyle C\subset X} {\displaystyle C\subset X}, and an affine subspace H {\displaystyle {\mathcal {H}}} {\displaystyle {\mathcal {H}}} defined by a set of affine constraints h i ( x ) = 0   {\displaystyle h_{i}(x)=0\ } {\displaystyle h_{i}(x)=0\ }, a conic optimization problem is to find the point x {\displaystyle x} {\displaystyle x} in C H {\displaystyle C\cap {\mathcal {H}}} {\displaystyle C\cap {\mathcal {H}}} for which the number f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} is smallest.

Examples of C {\displaystyle C} {\displaystyle C} include the positive orthant R + n = { x R n : x 0 } {\displaystyle \mathbb {R} _{+}^{n}=\left\{x\in \mathbb {R} ^{n}:,円x\geq \mathbf {0} \right\}} {\displaystyle \mathbb {R} _{+}^{n}=\left\{x\in \mathbb {R} ^{n}:,円x\geq \mathbf {0} \right\}}, positive semidefinite matrices S + n {\displaystyle \mathbb {S} _{+}^{n}} {\displaystyle \mathbb {S} _{+}^{n}}, and the second-order cone { ( x , t ) R n × R : x t } {\displaystyle \left\{(x,t)\in \mathbb {R} ^{n}\times \mathbb {R} :\lVert x\rVert \leq t\right\}} {\displaystyle \left\{(x,t)\in \mathbb {R} ^{n}\times \mathbb {R} :\lVert x\rVert \leq t\right\}}. Often f   {\displaystyle f\ } {\displaystyle f\ } is a linear function, in which case the conic optimization problem reduces to a linear program, a semidefinite program, and a second order cone program, respectively.

Duality

[edit ]

Certain special cases of conic optimization problems have notable closed-form expressions of their dual problems.

Conic LP

[edit ]

The dual of the conic linear program

minimize c T x   {\displaystyle c^{T}x\ } {\displaystyle c^{T}x\ }
subject to A x = b , x C   {\displaystyle Ax=b,x\in C\ } {\displaystyle Ax=b,x\in C\ }

is

maximize b T y   {\displaystyle b^{T}y\ } {\displaystyle b^{T}y\ }
subject to A T y + s = c , s C   {\displaystyle A^{T}y+s=c,s\in C^{*}\ } {\displaystyle A^{T}y+s=c,s\in C^{*}\ }

where C {\displaystyle C^{*}} {\displaystyle C^{*}} denotes the dual cone of C   {\displaystyle C\ } {\displaystyle C\ }.

Whilst weak duality holds in conic linear programming, strong duality does not necessarily hold.[1]

Semidefinite Program

[edit ]

The dual of a semidefinite program in inequality form

minimize c T x   {\displaystyle c^{T}x\ } {\displaystyle c^{T}x\ }
subject to x 1 F 1 + + x n F n + G 0 {\displaystyle x_{1}F_{1}+\cdots +x_{n}F_{n}+G\leq 0} {\displaystyle x_{1}F_{1}+\cdots +x_{n}F_{n}+G\leq 0}

is given by

maximize t r   ( G Z )   {\displaystyle \mathrm {tr} \ (GZ)\ } {\displaystyle \mathrm {tr} \ (GZ)\ }
subject to t r   ( F i Z ) + c i = 0 , i = 1 , , n {\displaystyle \mathrm {tr} \ (F_{i}Z)+c_{i}=0,\quad i=1,\dots ,n} {\displaystyle \mathrm {tr} \ (F_{i}Z)+c_{i}=0,\quad i=1,\dots ,n}
Z 0 {\displaystyle Z\geq 0} {\displaystyle Z\geq 0}

References

[edit ]
[edit ]

AltStyle によって変換されたページ (->オリジナル) /