SNOLAB
SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities constructed for the original Sudbury Neutrino Observatory (SNO) solar neutrino experiment.
SNOLAB is the world's deepest operational clean room facility. Although accessed through an active mine, the laboratory proper is maintained as a class-2000 cleanroom, with very low levels of dust and background radiation. SNOLAB's 2070 m (6800 feet) of overburden rock provides 6010 metre water equivalent (MWE) shielding from cosmic rays, providing a low-background environment for experiments requiring high sensitivities and extremely low counting rates.[1] The combination of great depth and cleanliness that SNOLAB affords allows extremely rare interactions and weak processes to be studied. In addition to neutrino and dark matter physics, SNOLAB is also host to biological experiments in an underground environment.
History
[edit ]The Sudbury Neutrino Observatory was the world's deepest underground experiment since the Kolar Gold Fields experiments ended with the closing of that mine in 1992.[2] Many research collaborations were, and still are, interested in conducting experiments in the 6000 MWE location.
In 2002, funding was approved by the Canada Foundation for Innovation to expand the SNO facilities into a general-purpose laboratory,[3] and more funding was received in 2007[4] and 2008.[5]
Construction of the major laboratory space was completed in 2009,[6] with the entire lab entering operation as a 'clean' space in March 2011.[7]
SNOLAB is the world's deepest underground laboratory, tied with the China Jinping Underground Laboratory since 2011. Although CJPL has more rock (2.4 km) above it, the effective depth for science purposes is determined by the cosmic ray muon flux, and CJPL's mountain location admits more muons from the side than SNOLAB's flat overburden. The measured muon fluxes are 0.27 μ/m2/day (3.1×ばつ10−10 μ/cm2/s) at SNOLAB,[1] [better source needed ] and 0.305±0.020 μ/m2/day ((3.53±0.23)×ばつ10−10 μ/cm2/s) at CJPL,[8] tied to within the measurement uncertainty. (For comparison, the rate on the surface, at sea level, is about 15 million μ/m2/day.)
CJPL does have the advantage of fewer radioisotopes in the surrounding rock.
Experiments
[edit ]As of November 2019[update] , SNOLAB hosts the following experiments:[9] [10] [3] [11] [12]
Neutrino detectors
[edit ]- SNO+ is a neutrino experiment using the original SNO experiment chamber, but using liquid scintillator in the place of heavy water from SNO. Linear alkyl benzene, the scintillator, increases the light yield, and therefore the sensitivity, allowing SNO+ to detect not only solar neutrinos, but also geoneutrinos, and reactor neutrinos. The ultimate goal of SNO+ is to observe neutrinoless double beta decay (0vbb).
- HALO (Helium and Lead Observatory) is a neutron detector using ring-shaped lead blocks to detect neutrinos from supernovae within our galaxy.[13] [14] HALO is part of the Supernova Early Warning System (SNEWS), an international collaboration of neutrino-sensitive detectors that will allow astronomers the opportunity to observe the first photons visible following a core-collapse supernova.[15]
Dark matter detectors
[edit ]- DAMIC - Dark Matter in Charged Coupled Devices (CCDs) – a dark matter detector using unusually thick CCDs to take long exposure images of particles passing through the detector. Various particles have known signatures and DAMIC seeks to find something new that could signal dark matter particles.[16] [17] [18] [19]
- DEAP-3600 - Dark Matter Experiment using Argon Pulse-shape Discrimination - is a second generation dark matter detector, using 3600 kg of liquid argon. This experiment aims to detect WIMP-like dark matter particles through argon scintillation, producing small amounts of light that is detected by extremely sensitive photomultiplier tubes.[20] [21] [22]
- The PICO 40L, a third generation bubble chamber dark matter search experiment,[10] [23] is a merger of the former PICASSO and COUPP collaborations.[24] [25] PICO operates using superheated fluids which form small bubbles when energy is deposited by particle interactions. These bubbles are then detected by high speed cameras and extremely sensitive microphones.[26]
Biological experiments
[edit ]- FLAME – Flies in A Mine Experiment – a biological experiment using fruit flies as a model organism to investigate the physical responses to working in increased atmospheric pressure underground.[27]
- REPAIR – Researching the Effects of the Presence and Absence of Ionizing Radiation – a biological experiment investigating the effects of low background radiation on growth, development, and cellular repair mechanisms.[28]
Projects under construction
[edit ]- SuperCDMS - Super-Cryogenic Dark Matter Search - is a second generation dark matter detector using silicon and germanium crystals cooled down to 10 mK, a fraction of a degree above absolute zero. This experiment aims to detect low mass dark matter particles through very small energy deposition in the crystal from particle collisions, resulting in vibrations detected by sensors.[29] [30] [31] [32]
- NEWS-G - New Experiments with Spheres–Gas – is a second generation spherical proportional counter electrostatic dark matter detector using noble gases in their gaseous state, as opposed to liquid noble gases used in DEAP-3600 and miniCLEAN. The original NEWS experiment is at the Laboratoire Souterrain de Modane.[33] [34]
Decommissioned experiments
[edit ]- The original heavy water based Sudbury Neutrino Observatory experiment,
- The POLARIS underground project at SNOLAB (PUPS), observing seismic signals at depth in very hard rock,
- The first-generation COUPP 4-kg bubble chamber dark matter search,[35] [36] [37] is no longer in operation.[38] [39]
- The DEAP-1 dark matter search,[38] [37] and
- The PICASSO dark matter search.[40] [4]
- MiniCLEAN (Cryogenic Low-Energy Astrophysics with Noble gases) dark matter detector,[10] : 24–32
Future projects
[edit ]Additional planned experiments have requested laboratory space such as the next-generation nEXO,[41] [42] [23] [43] [24] and the LEGEND-1000 [44] [45] searches for neutrinoless double beta decay.[38] [40] There are also plans for a larger PICO-500L detector.[46]
The total size of the SNOLAB underground facilities, including utility spaces and personnel spaces, is:[47] [48]
Excavated | Clean room | Laboratory | |
---|---|---|---|
Floor space | 7,215 m2 77,636 ft2 |
4,942 m2 53,180 ft2 |
3,055 m2 32,877 ft2 |
Volume | 46,648 m3 1,647,134 ft3 |
37,241 m3 1,314,973 ft3 |
29,555 m3 1,043,579 ft3 |
References
[edit ]- ^ a b SNOLAB User's Handbook Rev. 2 (PDF), 2006年06月26日, p. 13, retrieved 2013年02月01日
- ^ Mondal, Naba K. (January 2004). "Status of India-based Neutrino Observatory (INO)" (PDF). Proceedings of the Indian National Science Academy. 70 (1): 71–77. Retrieved 2007年08月28日.
- ^ a b "Canada selects 9 projects to lead in international research" (Press release). Canada Foundation for Innovation. 2002年06月20日. Retrieved 2007年09月21日.
- ^ a b "Province Supports Expansion of World's Deepest Lab Administered by Carleton University" (Press release). Carleton University. 2007年08月21日. Retrieved 2007年09月21日.
- ^ "New Funding will Support Underground Lab Operations as SNOLAB nears Completion" (PDF) (Press release). SNOLAB. 2008年01月18日. Retrieved 2008年02月26日.
- ^ Duncan, Fraser (2009年08月27日). "SNOLAB Facility Status" (PDF).
- ^ "SNOLAB Updates April 2011". Archived from the original on 2011年07月06日. Retrieved 2011年07月11日.
Construction of the lab is now complete. All of the services have been installed in all areas. The last area of the laboratory has now been given the "clean" designation and was opened for occupancy in March 2011. This means the entire lab is operating as a clean lab and brings the total lab space to about 50 000 ft2.
- ^ Gui, Zuyi; et al. (JNE collaboration) (13 Oct 2020). "Muon Flux Measurement at China Jinping Underground Laboratory". Chinese Physics C. 45 (2): 025001. arXiv:2007.15925 . doi:10.1088/1674-1137/abccae. S2CID 220920141. (Chinese Physics C , to appear)
- ^ SNOLAB: Current experiments
- ^ a b c Noble, Tony (2014年01月31日). Dark Matter Physics at SNOLAB and Future Prospects (PDF). Fourth International Workshop for the Design of the ANDES Underground Laboratory.
- ^ Duncan, Fraser (2015年08月24日). Overview of the SNOLAB Facility and Current Programme Evolution (PDF). SNOLAB Future Planning Workshop 2015 . Retrieved 2015年12月03日.
- ^ Jillings, Chris (9 September 2015). The SNOLAB science program (PDF). XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP2015). Torino. Retrieved 2015年11月30日.
- ^ HALO, 2012, retrieved 2019年11月14日
- ^ Helium and Lead Observatory, 2012, retrieved 2019年11月14日
- ^ SNEWS: Supernova Early Warning System, 2012, retrieved 2019年11月14日
- ^ DAMIC, 2012, retrieved 2019年11月15日
- ^ DAMIC Overview . (PDF), 2016年09月01日, retrieved 2019年11月15日
- ^ DAMIC now running at SNOLAB, 2019年07月29日, retrieved 2019年11月06日
- ^ Cancelo, Gustavo (2014年01月31日). The DAMIC experiment (PDF). Fourth International Workshop for the Design of the ANDES Underground Laboratory.
- ^ Field, Louisa (23 April 2015). "Biggest dark matter detector lies in wait for antisocial WIMPs". New Scientist. No. 3108.
At the end of April, it will join other underground detectors worldwide in the race to find dark matter.
- ^ DEAP, 2012, retrieved 2019年11月15日
- ^ DEAP-3600 Detector, 2012年11月01日, retrieved 2019年11月15日
- ^ a b "PICO: Searching for dark matter with superheated fluids". 2019年07月29日.
- ^ a b Crisler, Michael B. (21 August 2013). PICO 250-liter Bubble Chamber Dark Matter Experiment (PDF). SNOLAB Future Projects Planning Workshop 2013. p. 3. Retrieved 2015年12月03日.
PICASSO + COUPP = PICO
- ^ Neilson, Russell (2013年12月16日). COUPP/PICO Status Report (PDF). Fermilab All Experimenters Meeting. p. 7. Retrieved 2015年12月03日.
COUPP and PICASSO have merged to form the PICO collaboration to search for dark matter with superheated liquid detectors.
- ^ PICO: Searching for dark matter with superheated liquids, 2019年07月29日, retrieved 2019年11月15日
- ^ FLAME, 2012, retrieved 2019年11月15日
- ^ REPAIR, 2012, retrieved 2019年11月15日
- ^ "Second generation dark matter experiment coming to SNOLAB" (Press release). SNOLAB. 2014年07月18日. Retrieved 2014年09月18日.
- ^ Saab, Tarek (2012年08月01日). "The SuperCDMS Dark Matter Search" (PDF). SLAC Summer Institute 2012. SLAC National Accelerator Laboratory. Retrieved 2012年11月28日.
- ^ Construction Begins on One of the World's Most Sensitive Dark Matter Experiments, 2018年05月07日, retrieved 2019年11月15日
- ^ Rau, Wolfgang (2016年09月01日), SuperCDMS at SNOLAB (PDF), retrieved 2019年11月15日
- ^ NEWS, 2012, retrieved 2019年11月15日
- ^ New Experiments with Spheres-Gas, 2019, retrieved 2019年11月15日
- ^ "COUPP Experiment - E961".
- ^ Science at SNOLAB
- ^ a b Behnke, E.; Behnke, J.; Brice, S.J.; Broemmelsiek, D.; Collar, J.I.; Conner, A.; Cooper, P.S.; Crisler, M.; Dahl, C.E.; Fustin, D.; Grace, E.; Hall, J.; Hu, M.; Levine, I.; Lippincott, W. H.; Moan, T.; Nania, T.; Ramberg, E.; Robinson, A.E.; Sonnenschein, A.; Szydagis, M.; Vázquez-Jáuregui, E. (September 2012). "First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site". Physical Review D . 86 (5): 052001–052009. arXiv:1204.3094 . Bibcode:2012PhRvD..86e2001B. doi:10.1103/PhysRevD.86.052001. S2CID 28797578. FERMILAB-PUB-12-098-AD-AE-CD-E-PPD.
- ^ a b c Smith, Nigel J.T. (2013年09月08日). "Infrastructure Development for underground labs—SNOLAB experience" (PDF). 13th International Conference on Topics in Astroparticle and Underground Physics. Asilomar, California.
{{citation}}
: CS1 maint: location missing publisher (link) - ^ "The old COUPP detector using bubble chamber technology to search for dark matter. It is not running right now because they have a bigger detector to assemble and play with!" (2013年01月18日)
- ^ a b Smith, Nigel (17 June 2015). Advanced Instrumentation Techniques in SNOLAB (PDF). 2015 Canadian Association of Physicists Congress.
- ^ Sinclair, David (12 September 2013). The SNOLAB Science Programme. 13th International Conference on Topics in Astroparticle and Underground Physics. Asilomar, California. Retrieved 2014年11月21日.
- ^ Pocar, Andrea (8 September 2014). Searching for neutrino-less double beta decay with EXO-200 and nEXO (PDF). Neutrino Oscillation Workshop. Otranto . Retrieved 2015年01月10日.
- ^ Yang, Liang (8 July 2016). Status and Prospects for the EXO-200 and nEXO Experiments (PDF). XXVII International Conference on Neutrino Physics and Astrophysics. London. Video available at Neutrino Conference 2016 - Friday (part 1) on YouTube.
- ^ "LEGEND-1000 | Legend".
- ^ "SNOLAB hosts 2nd International Summit on the Future of Neutrinoless Double Beta Decay". 2 May 2023.
- ^ Vázquez-Jáuregui, Eric (2017年07月25日). PICO-500L: Simulations for a 500L Bubble Chamber for Dark Matter Search (PDF). TAUP2017.
- ^ Noble, T. (2009年02月18日). "SNOLAB: AstroParticle-Physics Research in Canada" (PDF). p. 4.
- ^ Vázquez-Jáuregui, Eric (2014年01月30日). Facility and experiment developments at SNOLAB (PDF). Fourth International Workshop for the Design of the ANDES Underground Laboratory.
External links
[edit ]- SNOLAB website
- SNOLAB french presentations
- "Experiment Cave". WIRED Science. Episode 104. 2007年10月24日. PBS.[permanent dead link ]
- Jepsen, Kathryn (2012年11月05日). "Voyage to SNOLAB". Symmetry. ISSN 1931-8367 . Retrieved 2012年11月26日.
- Semeniuk, Ivan (22 March 2014). "Going deep underground in Canada in search of dark matter". The Globe and Mail . Retrieved 22 March 2014.
- Larmour, Adelle (September 1, 2008). "Redpath completes 65ドル million SNOLAB expansion". Sudbury Mining Solutions Journal. Retrieved 2015年12月03日.
46°28.3′N 81°11.2′W / 46.4717°N 81.1867°W / 46.4717; -81.1867 (SNOLAB surface building)