Dilogarithm
In mathematics, the dilogarithm (or Spence's function), denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:
- {\displaystyle \operatorname {Li} _{2}(z)=-\int _{0}^{z}{\ln(1-u) \over u},円du{\text{, }}z\in \mathbb {C} }
and its reflection. For |z| ≤ 1, an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):
- {\displaystyle \operatorname {Li} _{2}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{2}}.}
Alternatively, the dilogarithm function is sometimes defined as
- {\displaystyle \int _{1}^{v}{\frac {\ln t}{1-t}}dt=\operatorname {Li} _{2}(1-v).}
In hyperbolic geometry the dilogarithm can be used to compute the volume of an ideal simplex. Specifically, a simplex whose vertices have cross ratio z has hyperbolic volume
- {\displaystyle D(z)=\operatorname {Im} \operatorname {Li} _{2}(z)+\arg(1-z)\log |z|.}
The function D(z) is sometimes called the Bloch-Wigner function.[1] Lobachevsky's function and Clausen's function are closely related functions.
William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.[2] He was at school with John Galt,[3] who later wrote a biographical essay on Spence.
Analytic structure
[edit ]Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at {\displaystyle z=1}, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis {\displaystyle (1,\infty )}. However, the function is continuous at the branch point and takes on the value {\displaystyle \operatorname {Li} _{2}(1)=\pi ^{2}/6}.
Identities
[edit ]- {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(-z)={\frac {1}{2}}\operatorname {Li} _{2}(z^{2}).}[4]
- {\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\frac {(\ln z)^{2}}{2}}.}[5]
- {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1-z)={\frac {{\pi }^{2}}{6}}-\ln z\cdot \ln(1-z).}[4] The reflection formula.
- {\displaystyle \operatorname {Li} _{2}(-z)-\operatorname {Li} _{2}(1-z)+{\frac {1}{2}}\operatorname {Li} _{2}(1-z^{2})=-{\frac {{\pi }^{2}}{12}}-\ln z\cdot \ln(z+1).}[5]
- {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}\left({\frac {1}{z}}\right)=-{\frac {\pi ^{2}}{6}}-{\frac {(\ln(-z))^{2}}{2}}.}[4]
- {\displaystyle \operatorname {L} (x)+\operatorname {L} (y)=\operatorname {L} (xy)+\operatorname {L} ({\frac {x(1-y)}{1-xy}})+\operatorname {L} ({\frac {y(1-x)}{1-xy}})}.[6] [7] Abel's functional equation or five-term relation where {\displaystyle \operatorname {L} (z)={\frac {\pi }{6}}[\operatorname {Li} _{2}(z)+{\frac {1}{2}}\ln(z)\ln(1-z)]} is the Rogers L-function (an analogous relation is satisfied also by the quantum dilogarithm)
Particular value identities
[edit ]- {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{3}}\right)-{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}-{\frac {(\ln 3)^{2}}{6}}.}[5]
- {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{3}}\right)-{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+{\frac {(\ln 3)^{2}}{6}}.}[5]
- {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{2}}\right)+{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+\ln 2\cdot \ln 3-{\frac {(\ln 2)^{2}}{2}}-{\frac {(\ln 3)^{2}}{3}}.}[5]
- {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{4}}\right)+{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}+2\ln 2\cdot \ln 3-2(\ln 2)^{2}-{\frac {2}{3}}(\ln 3)^{2}.} [5]
- {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{8}}\right)+\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {1}{2}}\left(\ln {\frac {9}{8}}\right)^{2}.}[5]
- {\displaystyle 36\operatorname {Li} _{2}\left({\frac {1}{2}}\right)-36\operatorname {Li} _{2}\left({\frac {1}{4}}\right)-12\operatorname {Li} _{2}\left({\frac {1}{8}}\right)+6\operatorname {Li} _{2}\left({\frac {1}{64}}\right)={\pi }^{2}.}
Special values
[edit ]- {\displaystyle \operatorname {Li} _{2}(-1)=-{\frac {{\pi }^{2}}{12}}.}
- {\displaystyle \operatorname {Li} _{2}(0)=0.} Its slope = 1.
- {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{2}}\right)={\frac {{\pi }^{2}}{12}}-{\frac {(\ln 2)^{2}}{2}}.}
- {\displaystyle \operatorname {Li} _{2}(1)=\zeta (2)={\frac {{\pi }^{2}}{6}},} where {\displaystyle \zeta (s)} is the Riemann zeta function.
- {\displaystyle \operatorname {Li} _{2}(2)={\frac {{\pi }^{2}}{4}}-i\pi \ln 2.}
- {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}-1}{2}}\right)&=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\left(\ln {\frac {{\sqrt {5}}+1}{2}}\right)^{2}\\&=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\operatorname {arcsch} ^{2}2.\end{aligned}}}
- {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}+1}{2}}\right)&=-{\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&=-{\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}
- {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left({\frac {3-{\sqrt {5}}}{2}}\right)&={\frac {{\pi }^{2}}{15}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&={\frac {{\pi }^{2}}{15}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}
- {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left({\frac {{\sqrt {5}}-1}{2}}\right)&={\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&={\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}
In particle physics
[edit ]Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:
- {\displaystyle \operatorname {\Phi } (x)=-\int _{0}^{x}{\frac {\ln |1-u|}{u}},円du={\begin{cases}\operatorname {Li} _{2}(x),&x\leq 1;\\{\frac {\pi ^{2}}{3}}-{\frac {1}{2}}(\ln x)^{2}-\operatorname {Li} _{2}({\frac {1}{x}}),&x>1.\end{cases}}}
See also
[edit ]Notes
[edit ]- ^ Zagier p. 10
- ^ "William Spence - Biography".
- ^ "Biography – GALT, JOHN – Volume VII (1836-1850) – Dictionary of Canadian Biography".
- ^ a b c Zagier
- ^ a b c d e f g Weisstein, Eric W. "Dilogarithm". MathWorld .
- ^ Weisstein, Eric W. "Rogers L-Function". mathworld.wolfram.com. Retrieved 2024年08月01日.
- ^ Rogers, L. J. (1907). "On the Representation of Certain Asymptotic Series as Convergent Continued Fractions". Proceedings of the London Mathematical Society. s2-4 (1): 72–89. doi:10.1112/plms/s2-4.1.72.
References
[edit ]- Lewin, L. (1958). Dilogarithms and associated functions. Foreword by J. C. P. Miller. London: Macdonald. MR 0105524.
- Morris, Robert (1979). "The dilogarithm function of a real argument". Math. Comp. 33 (146): 778–787. doi:10.1090/S0025-5718-1979-0521291-X . MR 0521291.
- Loxton, J. H. (1984). "Special values of the dilogarithm". Acta Arith. 18 (2): 155–166. doi:10.4064/aa-43-2-155-166 . MR 0736728.
- Kirillov, Anatol N. (1995). "Dilogarithm identities". Progress of Theoretical Physics Supplement. 118: 61–142. arXiv:hep-th/9408113 . Bibcode:1995PThPS.118...61K. doi:10.1143/PTPS.118.61. S2CID 119177149.
- Osacar, Carlos; Palacian, Jesus; Palacios, Manuel (1995). "Numerical evaluation of the dilogarithm of complex argument". Celest. Mech. Dyn. Astron. 62 (1): 93–98. Bibcode:1995CeMDA..62...93O. doi:10.1007/BF00692071. S2CID 121304484.
- Zagier, Don (2007). "The Dilogarithm Function". In Pierre Cartier; Pierre Moussa; Bernard Julia; Pierre Vanhove (eds.). Frontiers in Number Theory, Physics, and Geometry II (PDF). pp. 3–65. doi:10.1007/978-3-540-30308-4_1. ISBN 978-3-540-30308-4.
Further reading
[edit ]- Bloch, Spencer J. (2000). Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series. Vol. 11. Providence, RI: American Mathematical Society. ISBN 0-8218-2114-8. Zbl 0958.19001.