classscipy.interpolate.InterpolatedUnivariateSpline(x, y, w=None, bbox=[None,None], k=3, ext=0, check_finite=False)[source]#
1-D interpolating spline for a given set of data points.
Legacy
This class is considered legacy and will no longer receive updates. While we currently have no plans to remove it, we recommend that new code uses more modern alternatives instead. Specifically, we recommend using make_interp_spline instead.
Fits a spline y = spl(x) of degree k to the provided x, y data.
Spline function passes through all provided points. Equivalent to
UnivariateSpline with s = 0.
Parameters:
x(N,) array_like
Input dimension of data points – must be strictly increasing
y(N,) array_like
input dimension of data points
w(N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default),
weights are all 1.
bbox(2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), bbox=[x[0],x[-1]].
kint, optional
Degree of the smoothing spline. Must be 1<=k<=5. Default is
k=3, a cubic spline.
extint or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
if ext=0 or ‘extrapolate’, return the extrapolated value.
if ext=1 or ‘zeros’, return 0
if ext=2 or ‘raise’, raise a ValueError
if ext=3 of ‘const’, return the boundary value.
The default value is 0.
check_finitebool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.