module LUSolve

Solves a*x = b for x, using LU decomposition.

Public Instance Methods

ludecomp(a,n,zero=0,one=1) click to toggle source

Performs LU decomposition of the n by n matrix a.

# File ext/bigdecimal/lib/bigdecimal/ludcmp.rb, line 10
 def ludecomp(a,n,zero=0,one=1)
 prec = BigDecimal.limit(nil)
 ps = []
 scales = []
 for i in 0...n do # pick up largest(abs. val.) element in each row.
 ps <<= i
 nrmrow = zero
 ixn = i*n
 for j in 0...n do
 biggst = a[ixn+j].abs
 nrmrow = biggst if biggst>nrmrow
 end
 if nrmrow>zero then
 scales <<= one.div(nrmrow,prec)
 else
 raise "Singular matrix"
 end
 end
 n1 = n - 1
 for k in 0...n1 do # Gaussian elimination with partial pivoting.
 biggst = zero;
 for i in k...n do
 size = a[ps[i]*n+k].abs*scales[ps[i]]
 if size>biggst then
 biggst = size
 pividx = i
 end
 end
 raise "Singular matrix" if biggst<=zero
 if pividx!=k then
 j = ps[k]
 ps[k] = ps[pividx]
 ps[pividx] = j
 end
 pivot = a[ps[k]*n+k]
 for i in (k+1)...n do
 psin = ps[i]*n
 a[psin+k] = mult = a[psin+k].div(pivot,prec)
 if mult!=zero then
 pskn = ps[k]*n
 for j in (k+1)...n do
 a[psin+j] -= mult.mult(a[pskn+j],prec)
 end
 end
 end
 end
 raise "Singular matrix" if a[ps[n1]*n+n1] == zero
 ps
 end
 # Solves a*x = b for x, using LU decomposition.
 #
 # a is a matrix, b is a constant vector, x is the solution vector.
 #
 # ps is the pivot, a vector which indicates the permutation of rows performed
 # during LU decomposition.
 def lusolve(a,b,ps,zero=0.0)
 prec = BigDecimal.limit(nil)
 n = ps.size
 x = []
 for i in 0...n do
 dot = zero
 psin = ps[i]*n
 for j in 0...i do
 dot = a[psin+j].mult(x[j],prec) + dot
 end
 x <<= b[ps[i]] - dot
 end
 (n-1).downto(0) do |i|
 dot = zero
 psin = ps[i]*n
 for j in (i+1)...n do
 dot = a[psin+j].mult(x[j],prec) + dot
 end
 x[i] = (x[i]-dot).div(a[psin+i],prec)
 end
 x
 end
end
lusolve(a,b,ps,zero=0.0) click to toggle source

Solves a*x = b for x, using LU decomposition.

a is a matrix, b is a constant vector, x is the solution vector.

ps is the pivot, a vector which indicates the permutation of rows performed during LU decomposition.

# File ext/bigdecimal/lib/bigdecimal/ludcmp.rb, line 66
 def lusolve(a,b,ps,zero=0.0)
 prec = BigDecimal.limit(nil)
 n = ps.size
 x = []
 for i in 0...n do
 dot = zero
 psin = ps[i]*n
 for j in 0...i do
 dot = a[psin+j].mult(x[j],prec) + dot
 end
 x <<= b[ps[i]] - dot
 end
 (n-1).downto(0) do |i|
 dot = zero
 psin = ps[i]*n
 for j in (i+1)...n do
 dot = a[psin+j].mult(x[j],prec) + dot
 end
 x[i] = (x[i]-dot).div(a[psin+i],prec)
 end
 x
 end
end