Note
Go to the end to download the full example code.
(beta) Running the compiled optimizer with an LR Scheduler#
Created On: May 21, 2024 | Last Updated: May 21, 2024 | Last Verified: Nov 05, 2024
Author: Michael Lazos
The optimizer is a key algorithm for training any deep learning model.
In this example, we will show how to pair the optimizer, which has been compiled using torch.compile
,
with the LR schedulers to accelerate training convergence.
Note
This tutorial requires PyTorch 2.3.0 or later.
Model Setup#
For this example, we’ll use a simple sequence of linear layers.
importtorch # Create simple model model = torch.nn.Sequential ( *[torch.nn.Linear (1024, 1024, False, device="cuda") for _ in range(10)] ) input = torch.rand (1024, device="cuda") # run forward pass output = model (input) # run backward to populate the grads for our optimizer below output .sum().backward()
Setting up and running the compiled optimizer with LR Scheduler#
In this section, we’ll use the Adam optimizer with LinearLR Scheduler
and create a helper function to wrap the step()
call for each of them
in torch.compile()
.
Note
torch.compile
is only supported on CUDA devices that have a compute capability of 7.0 or higher.
# exit cleanly if we are on a device that doesn't support ``torch.compile`` if torch.cuda.get_device_capability () < (7, 0): print("Exiting because torch.compile is not supported on this device.") importsys sys.exit(0) # !!! IMPORTANT !!! Wrap the lr in a Tensor if we are pairing the # the optimizer with an LR Scheduler. # Without this, torch.compile will recompile as the value of the LR # changes. opt = torch.optim.Adam (model.parameters (), lr=torch.tensor (0.01)) sched = torch.optim.lr_scheduler.LinearLR (opt , total_iters=5) @torch.compile(fullgraph=False) deffn(): opt .step() sched.step () # Warmup runs to compile the function for _ in range(5): fn() print(opt .param_groups[0]["lr"])
tensor(0.0047) tensor(0.0060) tensor(0.0073) tensor(0.0087) tensor(0.0100)
Extension: What happens with a non-tensor LR?#
For the curious, we will show how to peek into what happens with torch.compile
when we don’t wrap the
LR in a tensor.
# No longer wrap the LR in a tensor here opt = torch.optim.Adam (model.parameters (), lr=0.01) sched = torch.optim.lr_scheduler.LinearLR (opt , total_iters=5) @torch.compile(fullgraph=False) deffn(): opt .step() sched.step () # Setup logging to view recompiles torch._logging.set_logs (recompiles=True) # Warmup runs to compile the function # We will now recompile on each iteration # as the value of the lr is mutated. for _ in range(5): fn()
V1002 01:32:38.542000 36428 torch/_dynamo/guards.py:3508] [1/1] [__recompiles] Recompiling function wrapper in /usr/local/lib/python3.10/dist-packages/torch/optim/optimizer.py:496 V1002 01:32:38.542000 36428 torch/_dynamo/guards.py:3508] [1/1] [__recompiles] triggered by the following guard failure(s): V1002 01:32:38.542000 36428 torch/_dynamo/guards.py:3508] [1/1] [__recompiles] - 1/0: Cache line invalidated because L['args'][0] got deallocated V1002 01:32:38.577000 36428 torch/_dynamo/guards.py:3508] [2/1] [__recompiles] Recompiling function step in /usr/local/lib/python3.10/dist-packages/torch/optim/adam.py:213 V1002 01:32:38.577000 36428 torch/_dynamo/guards.py:3508] [2/1] [__recompiles] triggered by the following guard failure(s): V1002 01:32:38.577000 36428 torch/_dynamo/guards.py:3508] [2/1] [__recompiles] - 2/0: Cache line invalidated because L['self'] got deallocated V1002 01:32:41.338000 36428 torch/_dynamo/guards.py:3508] [2/2] [__recompiles] Recompiling function step in /usr/local/lib/python3.10/dist-packages/torch/optim/adam.py:213 V1002 01:32:41.338000 36428 torch/_dynamo/guards.py:3508] [2/2] [__recompiles] triggered by the following guard failure(s): V1002 01:32:41.338000 36428 torch/_dynamo/guards.py:3508] [2/2] [__recompiles] - 2/1: ___as_tensor(self.param_groups[0]['lr']).item() == 0.003333333333333333 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:41.338000 36428 torch/_dynamo/guards.py:3508] [2/2] [__recompiles] - 2/0: Cache line invalidated because L['self'] got deallocated V1002 01:32:43.560000 36428 torch/_dynamo/guards.py:3508] [2/3] [__recompiles] Recompiling function step in /usr/local/lib/python3.10/dist-packages/torch/optim/adam.py:213 V1002 01:32:43.560000 36428 torch/_dynamo/guards.py:3508] [2/3] [__recompiles] triggered by the following guard failure(s): V1002 01:32:43.560000 36428 torch/_dynamo/guards.py:3508] [2/3] [__recompiles] - 2/2: ___as_tensor(self.param_groups[0]['lr']).item() == 0.004666666666666667 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:43.560000 36428 torch/_dynamo/guards.py:3508] [2/3] [__recompiles] - 2/1: ___as_tensor(self.param_groups[0]['lr']).item() == 0.003333333333333333 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:43.560000 36428 torch/_dynamo/guards.py:3508] [2/3] [__recompiles] - 2/0: Cache line invalidated because L['self'] got deallocated V1002 01:32:46.024000 36428 torch/_dynamo/guards.py:3508] [2/4] [__recompiles] Recompiling function step in /usr/local/lib/python3.10/dist-packages/torch/optim/adam.py:213 V1002 01:32:46.024000 36428 torch/_dynamo/guards.py:3508] [2/4] [__recompiles] triggered by the following guard failure(s): V1002 01:32:46.024000 36428 torch/_dynamo/guards.py:3508] [2/4] [__recompiles] - 2/3: ___as_tensor(self.param_groups[0]['lr']).item() == 0.006000000000000001 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:46.024000 36428 torch/_dynamo/guards.py:3508] [2/4] [__recompiles] - 2/2: ___as_tensor(self.param_groups[0]['lr']).item() == 0.004666666666666667 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:46.024000 36428 torch/_dynamo/guards.py:3508] [2/4] [__recompiles] - 2/1: ___as_tensor(self.param_groups[0]['lr']).item() == 0.003333333333333333 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:46.024000 36428 torch/_dynamo/guards.py:3508] [2/4] [__recompiles] - 2/0: Cache line invalidated because L['self'] got deallocated V1002 01:32:48.242000 36428 torch/_dynamo/guards.py:3508] [2/5] [__recompiles] Recompiling function step in /usr/local/lib/python3.10/dist-packages/torch/optim/adam.py:213 V1002 01:32:48.242000 36428 torch/_dynamo/guards.py:3508] [2/5] [__recompiles] triggered by the following guard failure(s): V1002 01:32:48.242000 36428 torch/_dynamo/guards.py:3508] [2/5] [__recompiles] - 2/4: ___as_tensor(self.param_groups[0]['lr']).item() == 0.007333333333333335 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:48.242000 36428 torch/_dynamo/guards.py:3508] [2/5] [__recompiles] - 2/3: ___as_tensor(self.param_groups[0]['lr']).item() == 0.006000000000000001 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:48.242000 36428 torch/_dynamo/guards.py:3508] [2/5] [__recompiles] - 2/2: ___as_tensor(self.param_groups[0]['lr']).item() == 0.004666666666666667 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:48.242000 36428 torch/_dynamo/guards.py:3508] [2/5] [__recompiles] - 2/1: ___as_tensor(self.param_groups[0]['lr']).item() == 0.003333333333333333 # (unknown source ___as_tensor(self.param_groups[0]['lr']).item(), please file a bug) V1002 01:32:48.242000 36428 torch/_dynamo/guards.py:3508] [2/5] [__recompiles] - 2/0: Cache line invalidated because L['self'] got deallocated
With this example, we can see that we recompile the optimizer a few times
due to the guard failure on the lr
in param_groups[0]
.
Conclusion#
In this tutorial we showed how to pair the optimizer compiled with torch.compile
with an LR Scheduler to accelerate training convergence. We used a model consisting
of a simple sequence of linear layers with the Adam optimizer paired
with a LinearLR scheduler to demonstrate the LR changing across iterations.
See also:
Compiled optimizer tutorial - an intro into the compiled optimizer.
Compiling the optimizer with PT2 - deeper technical details on the compiled optimizer.
Total running time of the script: (0 minutes 16.786 seconds)