Google Cloud Dialogflow v2 API - Class InferenceParameter (4.27.0)

public sealed class InferenceParameter : IMessage<InferenceParameter>, IEquatable<InferenceParameter>, IDeepCloneable<InferenceParameter>, IBufferMessage, IMessage

Reference documentation and code samples for the Google Cloud Dialogflow v2 API class InferenceParameter.

The parameters of inference.

Inheritance

object > InferenceParameter

Namespace

Google.Cloud.Dialogflow.V2

Assembly

Google.Cloud.Dialogflow.V2.dll

Constructors

InferenceParameter()

public InferenceParameter()

InferenceParameter(InferenceParameter)

public InferenceParameter(InferenceParameter other)
Parameter
Name Description
other InferenceParameter

Properties

HasMaxOutputTokens

public bool HasMaxOutputTokens { get; }

Gets whether the "max_output_tokens" field is set

Property Value
Type Description
bool

HasTemperature

public bool HasTemperature { get; }

Gets whether the "temperature" field is set

Property Value
Type Description
bool

HasTopK

public bool HasTopK { get; }

Gets whether the "top_k" field is set

Property Value
Type Description
bool

HasTopP

public bool HasTopP { get; }

Gets whether the "top_p" field is set

Property Value
Type Description
bool

MaxOutputTokens

public int MaxOutputTokens { get; set; }

Optional. Maximum number of the output tokens for the generator.

Property Value
Type Description
int

Temperature

public double Temperature { get; set; }

Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.

Property Value
Type Description
double

TopK

public int TopK { get; set; }

Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.

Property Value
Type Description
int

TopP

public double TopP { get; set; }

Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.

Property Value
Type Description
double

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年11月05日 UTC.