dlib C++ Library - matrix_ex.cpp

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
 This is an example illustrating the use of the matrix object 
 from the dlib C++ Library.
*/
#include <iostream>
#include <dlib/matrix.h>
using namespace dlib;
using namespace std;
// ----------------------------------------------------------------------------------------
int main()
{
 // Let's begin this example by using the library to solve a simple 
 // linear system.
 // 
 // We will find the value of x such that y = M*x where
 //
 // 3.5
 // y = 1.2
 // 7.8
 //
 // and M is
 //
 // 54.2 7.4 12.1
 // M = 1 2 3
 // 5.9 0.05 1
 // First let's declare these 3 matrices.
 // This declares a matrix that contains doubles and has 3 rows and 1 column.
 // Moreover, its size is a compile time constant since we put it inside the <>.
 matrix<double,3,1> y;
 // Make a 3 by 3 matrix of doubles for the M matrix. In this case, M is
 // sized at runtime and can therefore be resized later by calling M.set_size(). 
 matrix<double> M(3,3);
 
 // You may be wondering why someone would want to specify the size of a
 // matrix at compile time when you don't have to. The reason is two fold.
 // First, there is often a substantial performance improvement, especially
 // for small matrices, because it enables a number of optimizations that
 // otherwise would be impossible. Second, the dlib::matrix object checks
 // these compile time sizes to ensure that the matrices are being used
 // correctly. For example, if you attempt to compile the expression y*y you
 // will get a compiler error since that is not a legal matrix operation (the
 // matrix dimensions don't make sense as a matrix multiplication). So if
 // you know the size of a matrix at compile time then it is always a good
 // idea to let the compiler know about it.
 // Now we need to initialize the y and M matrices and we can do so like this:
 M = 54.2, 7.4, 12.1,
 1, 2, 3,
 5.9, 0.05, 1;
 y = 3.5, 
 1.2, 
 7.8;
 // The solution to y = M*x can be obtained by multiplying the inverse of M
 // with y. As an aside, you should *NEVER* use the auto keyword to capture
 // the output from a matrix expression. So don't do this: auto x = inv(M)*y; 
 // To understand why, read the matrix_expressions_ex.cpp example program.
 matrix<double> x = inv(M)*y;
 cout << "x: \n" << x << endl;
 // We can check that it really worked by plugging x back into the original equation 
 // and subtracting y to see if we get a column vector with values all very close
 // to zero (Which is what happens. Also, the values may not be exactly zero because 
 // there may be some numerical error and round off).
 cout << "M*x - y: \n" << M*x - y << endl;
 // Also note that we can create run-time sized column or row vectors like so
 matrix<double,0,1> runtime_sized_column_vector;
 matrix<double,1,0> runtime_sized_row_vector;
 // and then they are sized by saying
 runtime_sized_column_vector.set_size(3);
 // Similarly, the x matrix can be resized by calling set_size(num rows, num columns). For example
 x.set_size(3,4); // x now has 3 rows and 4 columns.
 // The elements of a matrix are accessed using the () operator like so:
 cout << M(0,1) << endl;
 // The above expression prints out the value 7.4. That is, the value of
 // the element at row 0 and column 1.
 // If we have a matrix that is a row or column vector. That is, it contains either 
 // a single row or a single column then we know that any access is always either 
 // to row 0 or column 0 so we can omit that 0 and use the following syntax.
 cout << y(1) << endl;
 // The above expression prints out the value 1.2
 // Let's compute the sum of elements in the M matrix.
 double M_sum = 0;
 // loop over all the rows
 for (long r = 0; r < M.nr(); ++r)
 {
 // loop over all the columns
 for (long c = 0; c < M.nc(); ++c)
 {
 M_sum += M(r,c);
 }
 }
 cout << "sum of all elements in M is " << M_sum << endl;
 // The above code is just to show you how to loop over the elements of a matrix. An 
 // easier way to find this sum is to do the following:
 cout << "sum of all elements in M is " << sum(M) << endl;
 // Note that you can always print a matrix to an output stream by saying:
 cout << M << endl;
 // which will print:
 // 54.2 7.4 12.1 
 // 1 2 3 
 // 5.9 0.05 1 
 // However, if you want to print using comma separators instead of spaces you can say:
 cout << csv << M << endl;
 // and you will instead get this as output:
 // 54.2, 7.4, 12.1
 // 1, 2, 3
 // 5.9, 0.05, 1
 // Conversely, you can also read in a matrix that uses either space, tab, or comma
 // separated values by uncommenting the following:
 // cin >> M;
 // ----------------------------- Comparison with MATLAB ------------------------------
 // Here I list a set of Matlab commands and their equivalent expressions using the dlib
 // matrix. Note that there are a lot more functions defined for the dlib::matrix. See
 // the HTML documentation for a full listing.
 matrix<double> A, B, C, D, E;
 matrix<int> Aint;
 matrix<long> Blong;
 // MATLAB: A = eye(3)
 A = identity_matrix<double>(3);
 // MATLAB: B = ones(3,4)
 B = ones_matrix<double>(3,4);
 // MATLAB: B = rand(3,4)
 B = randm(3,4);
 // MATLAB: C = 1.4*A
 C = 1.4*A;
 // MATLAB: D = A.*C
 D = pointwise_multiply(A,C);
 // MATLAB: E = A * B
 E = A*B;
 // MATLAB: E = A + C
 E = A + C;
 // MATLAB: E = A + 5
 E = A + 5;
 // MATLAB: E = E'
 E = trans(E); // Note that if you want a conjugate transpose then you need to say conj(trans(E))
 // MATLAB: E = B' * B
 E = trans(B)*B;
 double var;
 // MATLAB: var = A(1,2)
 var = A(0,1); // dlib::matrix is 0 indexed rather than starting at 1 like Matlab.
 // MATLAB: C = round(C)
 C = round(C);
 // MATLAB: C = floor(C)
 C = floor(C);
 // MATLAB: C = ceil(C)
 C = ceil(C);
 // MATLAB: C = diag(B)
 C = diag(B);
 // MATLAB: B = cast(A, "int32")
 Aint = matrix_cast<int>(A);
 // MATLAB: A = B(1,:)
 A = rowm(B,0);
 // MATLAB: A = B([1:2],:)
 A = rowm(B,range(0,1));
 // MATLAB: A = B(:,1)
 A = colm(B,0);
 // MATLAB: A = [1:5]
 Blong = range(1,5);
 // MATLAB: A = [1:2:5]
 Blong = range(1,2,5);
 // MATLAB: A = B([1:3], [1:2])
 A = subm(B, range(0,2), range(0,1));
 // or equivalently
 A = subm(B, rectangle(0,0,1,2));
 // MATLAB: A = B([1:3], [1:2:4])
 A = subm(B, range(0,2), range(0,2,3));
 // MATLAB: B(:,:) = 5
 B = 5;
 // or equivalently
 set_all_elements(B,5);
 // MATLAB: B([1:2],[1,2]) = 7
 set_subm(B,range(0,1), range(0,1)) = 7;
 // MATLAB: B([1:3],[2:3]) = A
 set_subm(B,range(0,2), range(1,2)) = A;
 // MATLAB: B(:,1) = 4
 set_colm(B,0) = 4;
 // MATLAB: B(:,[1:2]) = 4
 set_colm(B,range(0,1)) = 4;
 // MATLAB: B(:,1) = B(:,2)
 set_colm(B,0) = colm(B,1);
 // MATLAB: B(1,:) = 4
 set_rowm(B,0) = 4;
 // MATLAB: B(1,:) = B(2,:)
 set_rowm(B,0) = rowm(B,1);
 // MATLAB: var = det(E' * E)
 var = det(trans(E)*E);
 // MATLAB: C = pinv(E)
 C = pinv(E);
 // MATLAB: C = inv(E)
 C = inv(E);
 // MATLAB: [A,B,C] = svd(E)
 svd(E,A,B,C);
 // MATLAB: A = chol(E,'lower') 
 A = chol(E);
 // MATLAB: var = min(min(A))
 var = min(A);
}
// ----------------------------------------------------------------------------------------

AltStyle によって変換されたページ (->オリジナル) /