dlib C++ Library - svm_multiclass_linear.cpp

// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include "tester.h"
#include <dlib/svm_threaded.h>
#include <dlib/data_io.h>
#include "create_iris_datafile.h"
#include <vector>
#include <map>
#include <sstream>
namespace 
{
 using namespace test;
 using namespace dlib;
 using namespace std;
 dlib::logger dlog("test.svm_multiclass_trainer");
 class test_svm_multiclass_trainer : public tester
 {
 /*!
 WHAT THIS OBJECT REPRESENTS
 This object represents a unit test. When it is constructed
 it adds itself into the testing framework.
 !*/
 public:
 test_svm_multiclass_trainer (
 ) :
 tester (
 "test_svm_multiclass_trainer", // the command line argument name for this test
 "Run tests on the svm_multiclass_linear_trainer stuff.", // the command line argument description
 0 // the number of command line arguments for this test
 )
 {
 }
 void test_prior ()
 {
 print_spinner();
 typedef matrix<double,4,1> sample_type;
 typedef linear_kernel<sample_type> kernel_type;
 std::vector<sample_type> samples;
 std::vector<int> labels;
 for (int i = 0; i < 4; ++i)
 {
 if (i==2)
 ++i;
 for (int iter = 0; iter < 5; ++iter)
 {
 sample_type samp;
 samp = 0;
 samp(i) = 1;
 samples.push_back(samp);
 labels.push_back(i);
 }
 }
 svm_multiclass_linear_trainer<kernel_type,int> trainer;
 multiclass_linear_decision_function<kernel_type,int> df = trainer.train(samples, labels);
 //cout << "test: \n" << test_multiclass_decision_function(df, samples, labels) << endl;
 //cout << df.weights << endl;
 //cout << df.b << endl;
 std::vector<sample_type> samples2;
 std::vector<int> labels2;
 int i = 2;
 for (int iter = 0; iter < 5; ++iter)
 {
 sample_type samp;
 samp = 0;
 samp(i) = 1;
 samples2.push_back(samp);
 labels2.push_back(i);
 samples.push_back(samp);
 labels.push_back(i);
 }
 trainer.set_prior(df);
 trainer.set_c(0.1);
 df = trainer.train(samples2, labels2);
 matrix<double> res = test_multiclass_decision_function(df, samples, labels);
 dlog << LINFO << "test: \n" << res;
 dlog << LINFO << df.weights;
 dlog << LINFO << df.b;
 DLIB_TEST((unsigned int)sum(diag(res))==samples.size());
 }
 void test_prior_sparse ()
 {
 print_spinner();
 typedef std::map<unsigned long,double> sample_type;
 typedef sparse_linear_kernel<sample_type> kernel_type;
 std::vector<sample_type> samples;
 std::vector<int> labels;
 for (int i = 0; i < 4; ++i)
 {
 if (i==2)
 ++i;
 for (int iter = 0; iter < 5; ++iter)
 {
 sample_type samp;
 samp[i] = 1;
 samples.push_back(samp);
 labels.push_back(i);
 }
 }
 svm_multiclass_linear_trainer<kernel_type,int> trainer;
 multiclass_linear_decision_function<kernel_type,int> df = trainer.train(samples, labels);
 //cout << "test: \n" << test_multiclass_decision_function(df, samples, labels) << endl;
 //cout << df.weights << endl;
 //cout << df.b << endl;
 std::vector<sample_type> samples2;
 std::vector<int> labels2;
 int i = 2;
 for (int iter = 0; iter < 5; ++iter)
 {
 sample_type samp;
 samp[i] = 1;
 samp[i+10] = 1;
 samples2.push_back(samp);
 labels2.push_back(i);
 samples.push_back(samp);
 labels.push_back(i);
 }
 trainer.set_prior(df);
 trainer.set_c(0.1);
 df = trainer.train(samples2, labels2);
 matrix<double> res = test_multiclass_decision_function(df, samples, labels);
 dlog << LINFO << "test: \n" << res;
 dlog << LINFO << df.weights;
 dlog << LINFO << df.b;
 DLIB_TEST((unsigned int)sum(diag(res))==samples.size());
 }
 template <typename sample_type>
 void run_test()
 {
 print_spinner();
 typedef typename sample_type::value_type::second_type scalar_type;
 std::vector<sample_type> samples;
 std::vector<scalar_type> labels;
 load_libsvm_formatted_data("iris.scale",samples, labels);
 DLIB_TEST(samples.size() == 150);
 DLIB_TEST(labels.size() == 150);
 typedef sparse_linear_kernel<sample_type> kernel_type;
 svm_multiclass_linear_trainer<kernel_type> trainer;
 trainer.set_c(100);
 trainer.set_epsilon(0.000001);
 randomize_samples(samples, labels);
 matrix<double> cv = cross_validate_multiclass_trainer(trainer, samples, labels, 4);
 dlog << LINFO << "confusion matrix: \n" << cv;
 const scalar_type cv_accuracy = sum(diag(cv))/sum(cv);
 dlog << LINFO << "cv accuracy: " << cv_accuracy;
 DLIB_TEST(cv_accuracy > 0.97);
 {
 print_spinner();
 typedef matrix<scalar_type,0,1> dsample_type;
 std::vector<dsample_type> dsamples = sparse_to_dense(samples);
 DLIB_TEST(dsamples.size() == 150);
 typedef linear_kernel<dsample_type> kernel_type;
 svm_multiclass_linear_trainer<kernel_type> trainer;
 trainer.set_c(100);
 cv = cross_validate_multiclass_trainer(trainer, dsamples, labels, 4);
 dlog << LINFO << "dense confusion matrix: \n" << cv;
 const scalar_type cv_accuracy = sum(diag(cv))/sum(cv);
 dlog << LINFO << "dense cv accuracy: " << cv_accuracy;
 DLIB_TEST(cv_accuracy > 0.97);
 }
 }
 void perform_test (
 )
 {
 print_spinner();
 create_iris_datafile();
 run_test<std::map<unsigned int, double> >();
 run_test<std::map<unsigned int, float> >();
 run_test<std::vector<std::pair<unsigned int, float> > >();
 run_test<std::vector<std::pair<unsigned long, double> > >();
 test_prior();
 test_prior_sparse();
 }
 };
 test_svm_multiclass_trainer a;
}

AltStyle によって変換されたページ (->オリジナル) /