dlib C++ Library - sldf.cpp

// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include "tester.h"
#include <dlib/svm.h>
#include <dlib/rand.h>
#include <dlib/string.h>
#include <vector>
#include <sstream>
#include <ctime>
#include <dlib/data_io.h>
namespace 
{
 using namespace test;
 using namespace dlib;
 using namespace std;
 dlib::logger dlog("test.sldf");
 class sldf_tester : public tester
 {
 /*!
 WHAT THIS OBJECT REPRESENTS
 This object represents a unit test. When it is constructed
 it adds itself into the testing framework.
 !*/
 public:
 sldf_tester (
 ) :
 tester (
 "test_sldf", // the command line argument name for this test
 "Run tests on the simplify_linear_decision_function routines.", // the command line argument description
 0 // the number of command line arguments for this test
 )
 {
 }
 dlib::rand rnd;
 void perform_test (
 )
 {
 print_spinner();
 typedef std::map<unsigned long,double> sample_type;
 typedef matrix<double,0,1> dense_sample_type;
 typedef sparse_linear_kernel<sample_type> kernel_type;
 typedef linear_kernel<dense_sample_type> dense_kernel_type;
 svm_nu_trainer<kernel_type> linear_trainer;
 linear_trainer.set_nu(0.2);
 svm_nu_trainer<dense_kernel_type> dense_linear_trainer;
 dense_linear_trainer.set_nu(0.2);
 std::vector<sample_type> samples;
 std::vector<double> labels;
 // make an instance of a sample vector so we can use it below
 sample_type sample;
 // Now lets go into a loop and randomly generate 300 samples.
 double label = +1;
 for (int i = 0; i < 300; ++i)
 {
 // flip this flag
 label *= -1;
 sample.clear();
 // now make a random sparse sample with at most 10 non-zero elements
 for (int j = 0; j < 10; ++j)
 {
 int idx = rnd.get_random_32bit_number()%100;
 double value = rnd.get_random_double();
 sample[idx] = label*value;
 }
 // Also save the samples we are generating so we can let the svm_c_linear_trainer
 // learn from them below. 
 samples.push_back(sample);
 labels.push_back(label);
 }
 {
 print_spinner();
 dlog << LINFO << " test with sparse samples ";
 decision_function<kernel_type> df = linear_trainer.train(samples, labels);
 dlog << LINFO << "df.basis_vectors.size(): "<< df.basis_vectors.size();
 DLIB_TEST(df.basis_vectors.size() > 4);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(df, samples, labels);
 // save the outputs of the decision function before we mess with it
 std::vector<double> prev_vals;
 for (unsigned long i = 0; i < samples.size(); ++i)
 prev_vals.push_back(df(samples[i]));
 df = simplify_linear_decision_function(df);
 dlog << LINFO << "df.basis_vectors.size(): "<< df.basis_vectors.size();
 DLIB_TEST(df.basis_vectors.size() == 1);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(df, samples, labels);
 // now check that the simplified decision function still produces the same results
 std::vector<double> cur_vals;
 for (unsigned long i = 0; i < samples.size(); ++i)
 cur_vals.push_back(df(samples[i]));
 const double err = max(abs(mat(cur_vals) - mat(prev_vals)));
 dlog << LINFO << "simplify error: "<< err;
 DLIB_TEST(err < 1e-13);
 }
 // same as above but call simplify_linear_decision_function() two times
 {
 print_spinner();
 dlog << LINFO << " test with sparse samples ";
 decision_function<kernel_type> df = linear_trainer.train(samples, labels);
 dlog << LINFO << "df.basis_vectors.size(): "<< df.basis_vectors.size();
 DLIB_TEST(df.basis_vectors.size() > 4);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(df, samples, labels);
 // save the outputs of the decision function before we mess with it
 std::vector<double> prev_vals;
 for (unsigned long i = 0; i < samples.size(); ++i)
 prev_vals.push_back(df(samples[i]));
 df = simplify_linear_decision_function(df);
 df = simplify_linear_decision_function(df);
 dlog << LINFO << "df.basis_vectors.size(): "<< df.basis_vectors.size();
 DLIB_TEST(df.basis_vectors.size() == 1);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(df, samples, labels);
 // now check that the simplified decision function still produces the same results
 std::vector<double> cur_vals;
 for (unsigned long i = 0; i < samples.size(); ++i)
 cur_vals.push_back(df(samples[i]));
 const double err = max(abs(mat(cur_vals) - mat(prev_vals)));
 dlog << LINFO << "simplify error: "<< err;
 DLIB_TEST(err < 1e-13);
 }
 {
 print_spinner();
 dlog << LINFO << " test with dense samples ";
 std::vector<dense_sample_type> dense_samples(sparse_to_dense(samples));
 // In addition to the rule we learned with the pegasos trainer lets also use our linear_trainer
 // to learn a decision rule.
 decision_function<dense_kernel_type> dense_df = dense_linear_trainer.train(dense_samples, labels);
 dlog << LINFO << "dense_df.basis_vectors.size(): "<< dense_df.basis_vectors.size();
 DLIB_TEST(dense_df.basis_vectors.size() > 4);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(dense_df, dense_samples, labels);
 // save the outputs of the decision function before we mess with it
 std::vector<double> prev_vals;
 for (unsigned long i = 0; i < dense_samples.size(); ++i)
 prev_vals.push_back(dense_df(dense_samples[i]));
 dense_df = simplify_linear_decision_function(dense_df);
 dlog << LINFO << "dense_df.basis_vectors.size(): "<< dense_df.basis_vectors.size();
 DLIB_TEST(dense_df.basis_vectors.size() == 1);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(dense_df, dense_samples, labels);
 // now check that the simplified decision function still produces the same results
 std::vector<double> cur_vals;
 for (unsigned long i = 0; i < dense_samples.size(); ++i)
 cur_vals.push_back(dense_df(dense_samples[i]));
 const double err = max(abs(mat(cur_vals) - mat(prev_vals)));
 dlog << LINFO << "simplify error: "<< err;
 DLIB_TEST(err < 1e-13);
 }
 // same as above but call simplify_linear_decision_function() two times
 {
 print_spinner();
 dlog << LINFO << " test with dense samples ";
 std::vector<dense_sample_type> dense_samples(sparse_to_dense(samples));
 // In addition to the rule we learned with the pegasos trainer lets also use our linear_trainer
 // to learn a decision rule.
 decision_function<dense_kernel_type> dense_df = dense_linear_trainer.train(dense_samples, labels);
 dlog << LINFO << "dense_df.basis_vectors.size(): "<< dense_df.basis_vectors.size();
 DLIB_TEST(dense_df.basis_vectors.size() > 4);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(dense_df, dense_samples, labels);
 // save the outputs of the decision function before we mess with it
 std::vector<double> prev_vals;
 for (unsigned long i = 0; i < dense_samples.size(); ++i)
 prev_vals.push_back(dense_df(dense_samples[i]));
 dense_df = simplify_linear_decision_function(dense_df);
 dense_df = simplify_linear_decision_function(dense_df);
 dlog << LINFO << "dense_df.basis_vectors.size(): "<< dense_df.basis_vectors.size();
 DLIB_TEST(dense_df.basis_vectors.size() == 1);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(dense_df, dense_samples, labels);
 // now check that the simplified decision function still produces the same results
 std::vector<double> cur_vals;
 for (unsigned long i = 0; i < dense_samples.size(); ++i)
 cur_vals.push_back(dense_df(dense_samples[i]));
 const double err = max(abs(mat(cur_vals) - mat(prev_vals)));
 dlog << LINFO << "simplify error: "<< err;
 DLIB_TEST(err < 1e-13);
 }
 {
 print_spinner();
 dlog << LINFO << " test with sparse samples and a vector normalizer";
 std::vector<dense_sample_type> dense_samples(sparse_to_dense(samples));
 std::vector<dense_sample_type> norm_samples;
 // make a normalizer and normalize everything
 vector_normalizer<dense_sample_type> normalizer;
 normalizer.train(dense_samples);
 for (unsigned long i = 0; i < dense_samples.size(); ++i)
 norm_samples.push_back(normalizer(dense_samples[i]));
 normalized_function<decision_function<dense_kernel_type> > dense_df;
 dense_df.normalizer = normalizer;
 dense_df.function = dense_linear_trainer.train(norm_samples, labels);
 dlog << LINFO << "dense_df.function.basis_vectors.size(): "<< dense_df.function.basis_vectors.size();
 DLIB_TEST(dense_df.function.basis_vectors.size() > 4);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(dense_df, dense_samples, labels);
 // save the outputs of the decision function before we mess with it
 std::vector<double> prev_vals;
 for (unsigned long i = 0; i < dense_samples.size(); ++i)
 prev_vals.push_back(dense_df(dense_samples[i]));
 decision_function<dense_kernel_type> simple_df = simplify_linear_decision_function(dense_df);
 dlog << LINFO << "simple_df.basis_vectors.size(): "<< simple_df.basis_vectors.size();
 DLIB_TEST(simple_df.basis_vectors.size() == 1);
 dlog << LINFO << "test scores: "<< test_binary_decision_function(simple_df, dense_samples, labels);
 // now check that the simplified decision function still produces the same results
 std::vector<double> cur_vals;
 for (unsigned long i = 0; i < dense_samples.size(); ++i)
 cur_vals.push_back(simple_df(dense_samples[i]));
 const double err = max(abs(mat(cur_vals) - mat(prev_vals)));
 dlog << LINFO << "simplify error: "<< err;
 DLIB_TEST(err < 1e-13);
 }
 }
 };
 // Create an instance of this object. Doing this causes this test
 // to be automatically inserted into the testing framework whenever this cpp file
 // is linked into the project. Note that since we are inside an unnamed-namespace 
 // we won't get any linker errors about the symbol a being defined multiple times. 
 sldf_tester a;
}

AltStyle によって変換されたページ (->オリジナル) /