dlib C++ Library - statistics.h

// Copyright (C) 2008 Davis E. King (davis@dlib.net), Steve Taylor
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_STATISTICs_
#define DLIB_STATISTICs_
#include "statistics_abstract.h"
#include <limits>
#include <cmath>
#include "../algs.h"
#include "../matrix.h"
#include "../sparse_vector.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 class running_stats
 {
 public:
 running_stats()
 {
 clear();
 COMPILE_TIME_ASSERT ((
 is_same_type<float,T>::value ||
 is_same_type<double,T>::value ||
 is_same_type<long double,T>::value 
 ));
 }
 void clear()
 {
 sum_ = 0;
 sum_sqr = 0;
 sum_cub = 0;
 sum_four = 0;
 n = 0;
 min_value = std::numeric_limits<T>::infinity();
 max_value = -std::numeric_limits<T>::infinity();
 }
 void add (
 const T& val
 )
 {
 sum_ += val;
 sum_sqr += val*val;
 sum_cub += cubed(val);
 sum_four += quaded(val);
 if (val < min_value)
 min_value = val;
 if (val > max_value)
 max_value = val;
 ++n;
 }
 T current_n (
 ) const
 {
 return n;
 }
 T sum (
 ) const
 {
 return sum_;
 }
 T mean (
 ) const
 {
 if (n != 0)
 return sum_/n;
 else
 return 0;
 }
 T max (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 0,
 "\tT running_stats::max"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return max_value;
 }
 T min (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 0,
 "\tT running_stats::min"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return min_value;
 }
 T variance (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_stats::variance"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/(n-1);
 temp = temp*(sum_sqr - sum_*sum_/n);
 // make sure the variance is never negative. This might
 // happen due to numerical errors.
 if (temp >= 0)
 return temp;
 else
 return 0;
 }
 T stddev (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_stats::stddev"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return std::sqrt(variance());
 }
 T skewness (
 ) const
 { 
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 2,
 "\tT running_stats::skewness"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/n;
 T temp1 = std::sqrt(n*(n-1))/(n-2); 
 temp = temp1*temp*(sum_cub - 3*sum_sqr*sum_*temp + 2*cubed(sum_)*temp*temp)/
 (std::sqrt(std::pow(temp*(sum_sqr-sum_*sum_*temp),3)));
 return temp; 
 }
 T ex_kurtosis (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 3,
 "\tT running_stats::kurtosis"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/n;
 T m4 = temp*(sum_four - 4*sum_cub*sum_*temp+6*sum_sqr*sum_*sum_*temp*temp
 -3*quaded(sum_)*cubed(temp));
 T m2 = temp*(sum_sqr-sum_*sum_*temp);
 temp = (n-1)*((n+1)*m4/(m2*m2)-3*(n-1))/((n-2)*(n-3));
 return temp; 
 }
 T scale (
 const T& val
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_stats::variance"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return (val-mean())/std::sqrt(variance());
 }
 running_stats operator+ (
 const running_stats& rhs
 ) const
 {
 running_stats temp(*this);
 temp.sum_ += rhs.sum_;
 temp.sum_sqr += rhs.sum_sqr;
 temp.sum_cub += rhs.sum_cub;
 temp.sum_four += rhs.sum_four;
 temp.n += rhs.n;
 temp.min_value = std::min(rhs.min_value, min_value);
 temp.max_value = std::max(rhs.max_value, max_value);
 return temp;
 }
 template <typename U>
 friend void serialize (
 const running_stats<U>& item, 
 std::ostream& out 
 );
 template <typename U>
 friend void deserialize (
 running_stats<U>& item, 
 std::istream& in
 ); 
 private:
 T sum_;
 T sum_sqr;
 T sum_cub;
 T sum_four;
 T n;
 T min_value;
 T max_value;
 
 T cubed (const T& val) const {return val*val*val; }
 T quaded (const T& val) const {return val*val*val*val; }
 };
 template <typename T>
 void serialize (
 const running_stats<T>& item, 
 std::ostream& out 
 )
 {
 int version = 2;
 serialize(version, out);
 serialize(item.sum_, out);
 serialize(item.sum_sqr, out);
 serialize(item.sum_cub, out);
 serialize(item.sum_four, out);
 serialize(item.n, out);
 serialize(item.min_value, out);
 serialize(item.max_value, out);
 }
 template <typename T>
 void deserialize (
 running_stats<T>& item, 
 std::istream& in
 ) 
 {
 int version = 0;
 deserialize(version, in);
 if (version != 2)
 throw dlib::serialization_error("Unexpected version number found while deserializing dlib::running_stats object.");
 deserialize(item.sum_, in);
 deserialize(item.sum_sqr, in);
 deserialize(item.sum_cub, in);
 deserialize(item.sum_four, in);
 deserialize(item.n, in);
 deserialize(item.min_value, in);
 deserialize(item.max_value, in);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 class running_scalar_covariance
 {
 public:
 running_scalar_covariance()
 {
 clear();
 COMPILE_TIME_ASSERT ((
 is_same_type<float,T>::value ||
 is_same_type<double,T>::value ||
 is_same_type<long double,T>::value 
 ));
 }
 void clear()
 {
 sum_xy = 0;
 sum_x = 0;
 sum_y = 0;
 sum_xx = 0;
 sum_yy = 0;
 n = 0;
 }
 void add (
 const T& x,
 const T& y
 )
 {
 sum_xy += x*y;
 sum_xx += x*x;
 sum_yy += y*y;
 sum_x += x;
 sum_y += y;
 n += 1;
 }
 T current_n (
 ) const
 {
 return n;
 }
 T mean_x (
 ) const
 {
 if (n != 0)
 return sum_x/n;
 else
 return 0;
 }
 T mean_y (
 ) const
 {
 if (n != 0)
 return sum_y/n;
 else
 return 0;
 }
 T covariance (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance::covariance()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return 1/(n-1) * (sum_xy - sum_y*sum_x/n);
 }
 T correlation (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance::correlation()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return covariance() / std::sqrt(variance_x()*variance_y());
 }
 T variance_x (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance::variance_x()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/(n-1) * (sum_xx - sum_x*sum_x/n);
 // make sure the variance is never negative. This might
 // happen due to numerical errors.
 if (temp >= 0)
 return temp;
 else
 return 0;
 }
 T variance_y (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance::variance_y()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/(n-1) * (sum_yy - sum_y*sum_y/n);
 // make sure the variance is never negative. This might
 // happen due to numerical errors.
 if (temp >= 0)
 return temp;
 else
 return 0;
 }
 T stddev_x (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance::stddev_x()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return std::sqrt(variance_x());
 }
 T stddev_y (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance::stddev_y()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return std::sqrt(variance_y());
 }
 running_scalar_covariance operator+ (
 const running_scalar_covariance& rhs
 ) const
 {
 running_scalar_covariance temp(rhs);
 temp.sum_xy += sum_xy;
 temp.sum_x += sum_x;
 temp.sum_y += sum_y;
 temp.sum_xx += sum_xx;
 temp.sum_yy += sum_yy;
 temp.n += n;
 return temp;
 }
 private:
 T sum_xy;
 T sum_x;
 T sum_y;
 T sum_xx;
 T sum_yy;
 T n;
 };
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 class running_scalar_covariance_decayed
 {
 public:
 explicit running_scalar_covariance_decayed(
 T decay_halflife = 1000 
 )
 {
 DLIB_ASSERT(decay_halflife > 0);
 sum_xy = 0;
 sum_x = 0;
 sum_y = 0;
 sum_xx = 0;
 sum_yy = 0;
 forget = std::pow(0.5, 1/decay_halflife);
 n = 0;
 COMPILE_TIME_ASSERT ((
 is_same_type<float,T>::value ||
 is_same_type<double,T>::value ||
 is_same_type<long double,T>::value 
 ));
 }
 T forget_factor (
 ) const 
 { 
 return forget; 
 }
 void add (
 const T& x,
 const T& y
 )
 {
 sum_xy = sum_xy*forget + x*y;
 sum_xx = sum_xx*forget + x*x;
 sum_yy = sum_yy*forget + y*y;
 sum_x = sum_x*forget + x;
 sum_y = sum_y*forget + y;
 n = n*forget + 1;
 }
 T current_n (
 ) const
 {
 return n;
 }
 T mean_x (
 ) const
 {
 if (n != 0)
 return sum_x/n;
 else
 return 0;
 }
 T mean_y (
 ) const
 {
 if (n != 0)
 return sum_y/n;
 else
 return 0;
 }
 T covariance (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance_decayed::covariance()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return 1/(n-1) * (sum_xy - sum_y*sum_x/n);
 }
 T correlation (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance_decayed::correlation()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = std::sqrt(variance_x()*variance_y());
 if (temp != 0)
 return covariance() / temp;
 else
 return 0; // just say it's zero if there isn't any variance in x or y.
 }
 T variance_x (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance_decayed::variance_x()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/(n-1) * (sum_xx - sum_x*sum_x/n);
 // make sure the variance is never negative. This might
 // happen due to numerical errors.
 if (temp >= 0)
 return temp;
 else
 return 0;
 }
 T variance_y (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance_decayed::variance_y()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/(n-1) * (sum_yy - sum_y*sum_y/n);
 // make sure the variance is never negative. This might
 // happen due to numerical errors.
 if (temp >= 0)
 return temp;
 else
 return 0;
 }
 T stddev_x (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance_decayed::stddev_x()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return std::sqrt(variance_x());
 }
 T stddev_y (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_scalar_covariance_decayed::stddev_y()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return std::sqrt(variance_y());
 }
 private:
 T sum_xy;
 T sum_x;
 T sum_y;
 T sum_xx;
 T sum_yy;
 T n;
 T forget;
 };
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 class running_stats_decayed
 {
 public:
 explicit running_stats_decayed(
 T decay_halflife = 1000 
 )
 {
 DLIB_ASSERT(decay_halflife > 0);
 sum_x = 0;
 sum_xx = 0;
 forget = std::pow(0.5, 1/decay_halflife);
 n = 0;
 COMPILE_TIME_ASSERT ((
 is_same_type<float,T>::value ||
 is_same_type<double,T>::value ||
 is_same_type<long double,T>::value 
 ));
 }
 T forget_factor (
 ) const 
 { 
 return forget; 
 }
 void add (
 const T& x
 )
 {
 sum_xx = sum_xx*forget + x*x;
 sum_x = sum_x*forget + x;
 n = n*forget + 1;
 }
 T current_n (
 ) const
 {
 return n;
 }
 T mean (
 ) const
 {
 if (n != 0)
 return sum_x/n;
 else
 return 0;
 }
 T variance (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_stats_decayed::variance()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 T temp = 1/(n-1) * (sum_xx - sum_x*sum_x/n);
 // make sure the variance is never negative. This might
 // happen due to numerical errors.
 if (temp >= 0)
 return temp;
 else
 return 0;
 }
 T stddev (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(current_n() > 1,
 "\tT running_stats_decayed::stddev()"
 << "\n\tyou have to add some numbers to this object first"
 << "\n\tthis: " << this
 );
 return std::sqrt(variance());
 }
 template <typename U>
 friend void serialize (
 const running_stats_decayed<U>& item, 
 std::ostream& out 
 );
 template <typename U>
 friend void deserialize (
 running_stats_decayed<U>& item, 
 std::istream& in
 ); 
 private:
 T sum_x;
 T sum_xx;
 T n;
 T forget;
 };
 template <typename T>
 void serialize (
 const running_stats_decayed<T>& item, 
 std::ostream& out 
 )
 {
 int version = 1;
 serialize(version, out);
 serialize(item.sum_x, out);
 serialize(item.sum_xx, out);
 serialize(item.n, out);
 serialize(item.forget, out);
 }
 template <typename T>
 void deserialize (
 running_stats_decayed<T>& item, 
 std::istream& in
 ) 
 {
 int version = 0;
 deserialize(version, in);
 if (version != 1)
 throw dlib::serialization_error("Unexpected version number found while deserializing dlib::running_stats_decayed object.");
 deserialize(item.sum_x, in);
 deserialize(item.sum_xx, in);
 deserialize(item.n, in);
 deserialize(item.forget, in);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T, 
 typename alloc
 >
 double mean_sign_agreement (
 const std::vector<T,alloc>& a,
 const std::vector<T,alloc>& b
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(a.size() == b.size(),
 "\t double mean_sign_agreement(a,b)"
 << "\n\t a and b must be the same length."
 << "\n\t a.size(): " << a.size()
 << "\n\t b.size(): " << b.size()
 );
 
 double temp = 0;
 for (unsigned long i = 0; i < a.size(); ++i)
 {
 if ((a[i] >= 0 && b[i] >= 0) ||
 (a[i] < 0 && b[i] < 0))
 {
 temp += 1;
 }
 }
 return temp/a.size();
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T, 
 typename alloc
 >
 double correlation (
 const std::vector<T,alloc>& a,
 const std::vector<T,alloc>& b
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(a.size() == b.size() && a.size() > 1,
 "\t double correlation(a,b)"
 << "\n\t a and b must be the same length and have more than one element."
 << "\n\t a.size(): " << a.size()
 << "\n\t b.size(): " << b.size()
 );
 running_scalar_covariance<double> rs;
 for (unsigned long i = 0; i < a.size(); ++i)
 {
 rs.add(a[i], b[i]);
 }
 return rs.correlation();
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T, 
 typename alloc
 >
 double covariance (
 const std::vector<T,alloc>& a,
 const std::vector<T,alloc>& b
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(a.size() == b.size() && a.size() > 1,
 "\t double covariance(a,b)"
 << "\n\t a and b must be the same length and have more than one element."
 << "\n\t a.size(): " << a.size()
 << "\n\t b.size(): " << b.size()
 );
 running_scalar_covariance<double> rs;
 for (unsigned long i = 0; i < a.size(); ++i)
 {
 rs.add(a[i], b[i]);
 }
 return rs.covariance();
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T, 
 typename alloc
 >
 double r_squared (
 const std::vector<T,alloc>& a,
 const std::vector<T,alloc>& b
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(a.size() == b.size() && a.size() > 1,
 "\t double r_squared(a,b)"
 << "\n\t a and b must be the same length and have more than one element."
 << "\n\t a.size(): " << a.size()
 << "\n\t b.size(): " << b.size()
 );
 return std::pow(correlation(a,b),2.0);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T, 
 typename alloc
 >
 double mean_squared_error (
 const std::vector<T,alloc>& a,
 const std::vector<T,alloc>& b
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(a.size() == b.size(),
 "\t double mean_squared_error(a,b)"
 << "\n\t a and b must be the same length."
 << "\n\t a.size(): " << a.size()
 << "\n\t b.size(): " << b.size()
 );
 return mean(squared(matrix_cast<double>(mat(a))-matrix_cast<double>(mat(b))));
 }
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 class running_covariance
 {
 /*!
 INITIAL VALUE
 - vect_size == 0
 - total_count == 0
 CONVENTION
 - vect_size == in_vector_size()
 - total_count == current_n() 
 - if (total_count != 0)
 - total_sum == the sum of all vectors given to add()
 - the covariance of all the elements given to add() is given
 by:
 - let avg == total_sum/total_count
 - covariance == total_cov/total_count - avg*trans(avg)
 !*/
 public:
 typedef typename matrix_type::mem_manager_type mem_manager_type;
 typedef typename matrix_type::type scalar_type;
 typedef typename matrix_type::layout_type layout_type;
 typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
 typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;
 running_covariance(
 )
 {
 clear();
 }
 void clear(
 )
 {
 total_count = 0;
 vect_size = 0;
 total_sum.set_size(0);
 total_cov.set_size(0,0);
 }
 long in_vector_size (
 ) const
 {
 return vect_size;
 }
 long current_n (
 ) const
 {
 return static_cast<long>(total_count);
 }
 void set_dimension (
 long size
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( size > 0,
 "\t void running_covariance::set_dimension()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t size: " << size 
 << "\n\t this: " << this
 );
 clear();
 vect_size = size;
 total_sum.set_size(size);
 total_cov.set_size(size,size);
 total_sum = 0;
 total_cov = 0;
 }
 template <typename T>
 typename disable_if<is_matrix<T> >::type add (
 const T& val
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(((long)max_index_plus_one(val) <= in_vector_size() && in_vector_size() > 0),
 "\t void running_covariance::add()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t max_index_plus_one(val): " << max_index_plus_one(val) 
 << "\n\t in_vector_size(): " << in_vector_size() 
 << "\n\t this: " << this
 );
 for (typename T::const_iterator i = val.begin(); i != val.end(); ++i)
 {
 total_sum(i->first) += i->second;
 for (typename T::const_iterator j = val.begin(); j != val.end(); ++j)
 {
 total_cov(i->first, j->first) += i->second*j->second;
 }
 }
 ++total_count;
 }
 template <typename T>
 typename enable_if<is_matrix<T> >::type add (
 const T& val
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(is_col_vector(val) && (in_vector_size() == 0 || val.size() == in_vector_size()),
 "\t void running_covariance::add()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t is_col_vector(val): " << is_col_vector(val) 
 << "\n\t in_vector_size(): " << in_vector_size() 
 << "\n\t val.size(): " << val.size() 
 << "\n\t this: " << this
 );
 vect_size = val.size();
 if (total_count == 0)
 {
 total_cov = val*trans(val);
 total_sum = val;
 }
 else
 {
 total_cov += val*trans(val);
 total_sum += val;
 }
 ++total_count;
 }
 const column_matrix mean (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( in_vector_size() != 0,
 "\t running_covariance::mean()"
 << "\n\t This object can not execute this function in its current state."
 << "\n\t in_vector_size(): " << in_vector_size() 
 << "\n\t current_n(): " << current_n() 
 << "\n\t this: " << this
 );
 return total_sum/total_count;
 }
 const general_matrix covariance (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( in_vector_size() != 0 && current_n() > 1,
 "\t running_covariance::covariance()"
 << "\n\t This object can not execute this function in its current state."
 << "\n\t in_vector_size(): " << in_vector_size() 
 << "\n\t current_n(): " << current_n() 
 << "\n\t this: " << this
 );
 return (total_cov - total_sum*trans(total_sum)/total_count)/(total_count-1);
 }
 const running_covariance operator+ (
 const running_covariance& item
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT((in_vector_size() == 0 || item.in_vector_size() == 0 || in_vector_size() == item.in_vector_size()),
 "\t running_covariance running_covariance::operator+()"
 << "\n\t The two running_covariance objects being added must have compatible parameters"
 << "\n\t in_vector_size(): " << in_vector_size() 
 << "\n\t item.in_vector_size(): " << item.in_vector_size() 
 << "\n\t this: " << this
 );
 running_covariance temp(item);
 // make sure we ignore empty matrices
 if (total_count != 0 && temp.total_count != 0)
 {
 temp.total_cov += total_cov;
 temp.total_sum += total_sum;
 temp.total_count += total_count;
 }
 else if (total_count != 0)
 {
 temp.total_cov = total_cov;
 temp.total_sum = total_sum;
 temp.total_count = total_count;
 }
 return temp;
 }
 private:
 general_matrix total_cov;
 column_matrix total_sum;
 scalar_type total_count;
 long vect_size;
 };
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 class running_cross_covariance
 {
 /*!
 INITIAL VALUE
 - x_vect_size == 0
 - y_vect_size == 0
 - total_count == 0
 CONVENTION
 - x_vect_size == x_vector_size()
 - y_vect_size == y_vector_size()
 - total_count == current_n() 
 - if (total_count != 0)
 - sum_x == the sum of all x vectors given to add()
 - sum_y == the sum of all y vectors given to add()
 - total_cov == sum of all x*trans(y) given to add()
 !*/
 public:
 typedef typename matrix_type::mem_manager_type mem_manager_type;
 typedef typename matrix_type::type scalar_type;
 typedef typename matrix_type::layout_type layout_type;
 typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
 typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;
 running_cross_covariance(
 )
 {
 clear();
 }
 void clear(
 )
 {
 total_count = 0;
 x_vect_size = 0;
 y_vect_size = 0;
 sum_x.set_size(0);
 sum_y.set_size(0);
 total_cov.set_size(0,0);
 }
 long x_vector_size (
 ) const
 {
 return x_vect_size;
 }
 long y_vector_size (
 ) const
 {
 return y_vect_size;
 }
 void set_dimensions (
 long x_size,
 long y_size
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( x_size > 0 && y_size > 0,
 "\t void running_cross_covariance::set_dimensions()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t x_size: " << x_size 
 << "\n\t y_size: " << y_size 
 << "\n\t this: " << this
 );
 clear();
 x_vect_size = x_size;
 y_vect_size = y_size;
 sum_x.set_size(x_size);
 sum_y.set_size(y_size);
 total_cov.set_size(x_size,y_size);
 sum_x = 0;
 sum_y = 0;
 total_cov = 0;
 }
 long current_n (
 ) const
 {
 return static_cast<long>(total_count);
 }
 template <typename T, typename U>
 typename enable_if_c<!is_matrix<T>::value && !is_matrix<U>::value>::type add (
 const T& x,
 const U& y
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( ((long)max_index_plus_one(x) <= x_vector_size() && x_vector_size() > 0) &&
 ((long)max_index_plus_one(y) <= y_vector_size() && y_vector_size() > 0) ,
 "\t void running_cross_covariance::add()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t max_index_plus_one(x): " << max_index_plus_one(x) 
 << "\n\t max_index_plus_one(y): " << max_index_plus_one(y) 
 << "\n\t x_vector_size(): " << x_vector_size() 
 << "\n\t y_vector_size(): " << y_vector_size() 
 << "\n\t this: " << this
 );
 for (typename T::const_iterator i = x.begin(); i != x.end(); ++i)
 {
 sum_x(i->first) += i->second;
 for (typename U::const_iterator j = y.begin(); j != y.end(); ++j)
 {
 total_cov(i->first, j->first) += i->second*j->second;
 }
 }
 // do sum_y += y
 for (typename U::const_iterator j = y.begin(); j != y.end(); ++j)
 {
 sum_y(j->first) += j->second;
 }
 ++total_count;
 }
 template <typename T, typename U>
 typename enable_if_c<is_matrix<T>::value && !is_matrix<U>::value>::type add (
 const T& x,
 const U& y
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( (is_col_vector(x) && x.size() == x_vector_size() && x_vector_size() > 0) &&
 ((long)max_index_plus_one(y) <= y_vector_size() && y_vector_size() > 0) ,
 "\t void running_cross_covariance::add()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t is_col_vector(x): " << is_col_vector(x) 
 << "\n\t x.size(): " << x.size() 
 << "\n\t max_index_plus_one(y): " << max_index_plus_one(y) 
 << "\n\t x_vector_size(): " << x_vector_size() 
 << "\n\t y_vector_size(): " << y_vector_size() 
 << "\n\t this: " << this
 );
 sum_x += x;
 for (long i = 0; i < x.size(); ++i)
 {
 for (typename U::const_iterator j = y.begin(); j != y.end(); ++j)
 {
 total_cov(i, j->first) += x(i)*j->second;
 }
 }
 // do sum_y += y
 for (typename U::const_iterator j = y.begin(); j != y.end(); ++j)
 {
 sum_y(j->first) += j->second;
 }
 ++total_count;
 }
 template <typename T, typename U>
 typename enable_if_c<!is_matrix<T>::value && is_matrix<U>::value>::type add (
 const T& x,
 const U& y
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( ((long)max_index_plus_one(x) <= x_vector_size() && x_vector_size() > 0) &&
 (is_col_vector(y) && y.size() == (long)y_vector_size() && y_vector_size() > 0) ,
 "\t void running_cross_covariance::add()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t max_index_plus_one(x): " << max_index_plus_one(x) 
 << "\n\t is_col_vector(y): " << is_col_vector(y) 
 << "\n\t y.size(): " << y.size() 
 << "\n\t x_vector_size(): " << x_vector_size() 
 << "\n\t y_vector_size(): " << y_vector_size() 
 << "\n\t this: " << this
 );
 for (typename T::const_iterator i = x.begin(); i != x.end(); ++i)
 {
 sum_x(i->first) += i->second;
 for (long j = 0; j < y.size(); ++j)
 {
 total_cov(i->first, j) += i->second*y(j);
 }
 }
 sum_y += y;
 ++total_count;
 }
 template <typename T, typename U>
 typename enable_if_c<is_matrix<T>::value && is_matrix<U>::value>::type add (
 const T& x,
 const U& y
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(is_col_vector(x) && (x_vector_size() == 0 || x.size() == x_vector_size()) &&
 is_col_vector(y) && (y_vector_size() == 0 || y.size() == y_vector_size()) &&
 x.size() != 0 &&
 y.size() != 0,
 "\t void running_cross_covariance::add()"
 << "\n\t Invalid inputs were given to this function"
 << "\n\t is_col_vector(x): " << is_col_vector(x) 
 << "\n\t x_vector_size(): " << x_vector_size() 
 << "\n\t x.size(): " << x.size() 
 << "\n\t is_col_vector(y): " << is_col_vector(y) 
 << "\n\t y_vector_size(): " << y_vector_size() 
 << "\n\t y.size(): " << y.size() 
 << "\n\t this: " << this
 );
 x_vect_size = x.size();
 y_vect_size = y.size();
 if (total_count == 0)
 {
 total_cov = x*trans(y);
 sum_x = x;
 sum_y = y;
 }
 else
 {
 total_cov += x*trans(y);
 sum_x += x;
 sum_y += y;
 }
 ++total_count;
 }
 const column_matrix mean_x (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( current_n() != 0,
 "\t running_cross_covariance::mean()"
 << "\n\t This object can not execute this function in its current state."
 << "\n\t current_n(): " << current_n() 
 << "\n\t this: " << this
 );
 return sum_x/total_count;
 }
 const column_matrix mean_y (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( current_n() != 0,
 "\t running_cross_covariance::mean()"
 << "\n\t This object can not execute this function in its current state."
 << "\n\t current_n(): " << current_n() 
 << "\n\t this: " << this
 );
 return sum_y/total_count;
 }
 const general_matrix covariance_xy (
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( current_n() > 1,
 "\t running_cross_covariance::covariance()"
 << "\n\t This object can not execute this function in its current state."
 << "\n\t x_vector_size(): " << x_vector_size() 
 << "\n\t y_vector_size(): " << y_vector_size() 
 << "\n\t current_n(): " << current_n() 
 << "\n\t this: " << this
 );
 return (total_cov - sum_x*trans(sum_y)/total_count)/(total_count-1);
 }
 const running_cross_covariance operator+ (
 const running_cross_covariance& item
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT((x_vector_size() == 0 || item.x_vector_size() == 0 || x_vector_size() == item.x_vector_size()) &&
 (y_vector_size() == 0 || item.y_vector_size() == 0 || y_vector_size() == item.y_vector_size()),
 "\t running_cross_covariance running_cross_covariance::operator+()"
 << "\n\t The two running_cross_covariance objects being added must have compatible parameters"
 << "\n\t x_vector_size(): " << x_vector_size() 
 << "\n\t item.x_vector_size(): " << item.x_vector_size() 
 << "\n\t y_vector_size(): " << y_vector_size() 
 << "\n\t item.y_vector_size(): " << item.y_vector_size() 
 << "\n\t this: " << this
 );
 running_cross_covariance temp(item);
 // make sure we ignore empty matrices
 if (total_count != 0 && temp.total_count != 0)
 {
 temp.total_cov += total_cov;
 temp.sum_x += sum_x;
 temp.sum_y += sum_y;
 temp.total_count += total_count;
 }
 else if (total_count != 0)
 {
 temp.total_cov = total_cov;
 temp.sum_x = sum_x;
 temp.sum_y = sum_y;
 temp.total_count = total_count;
 }
 return temp;
 }
 private:
 general_matrix total_cov;
 column_matrix sum_x;
 column_matrix sum_y;
 scalar_type total_count;
 long x_vect_size;
 long y_vect_size;
 };
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 class vector_normalizer
 {
 public:
 typedef typename matrix_type::mem_manager_type mem_manager_type;
 typedef typename matrix_type::type scalar_type;
 typedef matrix_type result_type;
 template <typename vector_type>
 void train (
 const vector_type& samples
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(samples.size() > 0,
 "\tvoid vector_normalizer::train()"
 << "\n\tyou have to give a nonempty set of samples to this function"
 << "\n\tthis: " << this
 );
 m = mean(mat(samples));
 sd = reciprocal(sqrt(variance(mat(samples))));
 DLIB_ASSERT(is_finite(m), "Some of the input vectors to vector_normalizer::train() have infinite or NaN values");
 }
 long in_vector_size (
 ) const
 {
 return m.nr();
 }
 long out_vector_size (
 ) const
 {
 return m.nr();
 }
 const matrix_type& means (
 ) const
 {
 return m;
 }
 const matrix_type& std_devs (
 ) const
 {
 return sd;
 }
 const result_type& operator() (
 const matrix_type& x
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(x.nr() == in_vector_size() && x.nc() == 1,
 "\tmatrix vector_normalizer::operator()"
 << "\n\t you have given invalid arguments to this function"
 << "\n\t x.nr(): " << x.nr()
 << "\n\t in_vector_size(): " << in_vector_size()
 << "\n\t x.nc(): " << x.nc()
 << "\n\t this: " << this
 );
 temp_out = pointwise_multiply(x-m, sd);
 return temp_out;
 }
 void swap (
 vector_normalizer& item
 )
 {
 m.swap(item.m);
 sd.swap(item.sd);
 temp_out.swap(item.temp_out);
 }
 template <typename mt>
 friend void deserialize (
 vector_normalizer<mt>& item, 
 std::istream& in
 ); 
 template <typename mt>
 friend void serialize (
 const vector_normalizer<mt>& item, 
 std::ostream& out 
 );
 private:
 // ------------------- private data members -------------------
 matrix_type m, sd;
 // This is just a temporary variable that doesn't contribute to the
 // state of this object.
 mutable matrix_type temp_out;
 };
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 inline void swap (
 vector_normalizer<matrix_type>& a, 
 vector_normalizer<matrix_type>& b 
 ) { a.swap(b); } 
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 void deserialize (
 vector_normalizer<matrix_type>& item, 
 std::istream& in
 ) 
 {
 deserialize(item.m, in);
 deserialize(item.sd, in);
 // Keep deserializing the pca matrix for backwards compatibility.
 matrix<double> pca;
 deserialize(pca, in);
 if (pca.size() != 0)
 throw serialization_error("Error deserializing object of type vector_normalizer\n" 
 "It looks like a serialized vector_normalizer_pca was accidentally deserialized into \n"
 "a vector_normalizer object.");
 }
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 void serialize (
 const vector_normalizer<matrix_type>& item, 
 std::ostream& out 
 )
 {
 serialize(item.m, out);
 serialize(item.sd, out);
 // Keep serializing the pca matrix for backwards compatibility.
 matrix<double> pca;
 serialize(pca, out);
 }
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 class vector_normalizer_pca
 {
 public:
 typedef typename matrix_type::mem_manager_type mem_manager_type;
 typedef typename matrix_type::type scalar_type;
 typedef matrix<scalar_type,0,1,mem_manager_type> result_type;
 template <typename vector_type>
 void train (
 const vector_type& samples,
 const double eps = 0.99
 )
 {
 // You are getting an error here because you are trying to apply PCA
 // to a vector of fixed length. But PCA is going to try and do 
 // dimensionality reduction so you can't use a vector with a fixed dimension.
 COMPILE_TIME_ASSERT(matrix_type::NR == 0);
 // make sure requires clause is not broken
 DLIB_ASSERT(samples.size() > 0,
 "\tvoid vector_normalizer_pca::train_pca()"
 << "\n\tyou have to give a nonempty set of samples to this function"
 << "\n\tthis: " << this
 );
 DLIB_ASSERT(0 < eps && eps <= 1,
 "\tvoid vector_normalizer_pca::train_pca()"
 << "\n\tyou have to give a nonempty set of samples to this function"
 << "\n\tthis: " << this
 );
 train_pca_impl(mat(samples),eps);
 DLIB_ASSERT(is_finite(m), "Some of the input vectors to vector_normalizer_pca::train() have infinite or NaN values");
 }
 long in_vector_size (
 ) const
 {
 return m.nr();
 }
 long out_vector_size (
 ) const
 {
 return pca.nr();
 }
 const matrix<scalar_type,0,1,mem_manager_type>& means (
 ) const
 {
 return m;
 }
 const matrix<scalar_type,0,1,mem_manager_type>& std_devs (
 ) const
 {
 return sd;
 }
 const matrix<scalar_type,0,0,mem_manager_type>& pca_matrix (
 ) const
 {
 return pca;
 }
 const result_type& operator() (
 const matrix_type& x
 ) const
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(x.nr() == in_vector_size() && x.nc() == 1,
 "\tmatrix vector_normalizer_pca::operator()"
 << "\n\t you have given invalid arguments to this function"
 << "\n\t x.nr(): " << x.nr()
 << "\n\t in_vector_size(): " << in_vector_size()
 << "\n\t x.nc(): " << x.nc()
 << "\n\t this: " << this
 );
 // If we have a pca transform matrix on hand then
 // also apply that.
 temp_out = pca*pointwise_multiply(x-m, sd);
 return temp_out;
 }
 void swap (
 vector_normalizer_pca& item
 )
 {
 m.swap(item.m);
 sd.swap(item.sd);
 pca.swap(item.pca);
 temp_out.swap(item.temp_out);
 }
 template <typename T>
 friend void deserialize (
 vector_normalizer_pca<T>& item, 
 std::istream& in
 );
 template <typename T>
 friend void serialize (
 const vector_normalizer_pca<T>& item, 
 std::ostream& out 
 );
 private:
 template <typename mat_type>
 void train_pca_impl (
 const mat_type& samples,
 const double eps 
 )
 {
 m = mean(samples);
 sd = reciprocal(sqrt(variance(samples)));
 // fill x with the normalized version of the input samples
 matrix<typename mat_type::type,0,1,mem_manager_type> x(samples);
 for (long r = 0; r < x.size(); ++r)
 x(r) = pointwise_multiply(x(r)-m, sd);
 matrix<scalar_type,0,0,mem_manager_type> temp, eigen;
 matrix<scalar_type,0,1,mem_manager_type> eigenvalues;
 // Compute the svd of the covariance matrix of the normalized inputs
 svd(covariance(x), temp, eigen, pca);
 eigenvalues = diag(eigen);
 rsort_columns(pca, eigenvalues);
 // figure out how many eigenvectors we want in our pca matrix
 const double thresh = sum(eigenvalues)*eps;
 long num_vectors = 0;
 double total = 0;
 for (long r = 0; r < eigenvalues.size() && total < thresh; ++r)
 {
 ++num_vectors;
 total += eigenvalues(r);
 }
 // So now we know we want to use num_vectors of the first eigenvectors. So
 // pull those out and discard the rest.
 pca = trans(colm(pca,range(0,num_vectors-1)));
 // Apply the pca transform to the data in x. Then we will normalize the
 // pca matrix below.
 for (long r = 0; r < x.nr(); ++r)
 {
 x(r) = pca*x(r);
 }
 // Here we just scale the output features from the pca transform so 
 // that the variance of each feature is 1. So this doesn't really change
 // what the pca is doing, it just makes sure the output features are
 // normalized.
 pca = trans(scale_columns(trans(pca), reciprocal(sqrt(variance(x)))));
 }
 // ------------------- private data members -------------------
 matrix<scalar_type,0,1,mem_manager_type> m, sd;
 matrix<scalar_type,0,0,mem_manager_type> pca;
 // This is just a temporary variable that doesn't contribute to the
 // state of this object.
 mutable result_type temp_out;
 };
 template <
 typename matrix_type
 >
 inline void swap (
 vector_normalizer_pca<matrix_type>& a, 
 vector_normalizer_pca<matrix_type>& b 
 ) { a.swap(b); } 
// ----------------------------------------------------------------------------------------
 template <
 typename matrix_type
 >
 void deserialize (
 vector_normalizer_pca<matrix_type>& item, 
 std::istream& in
 ) 
 {
 deserialize(item.m, in);
 deserialize(item.sd, in);
 deserialize(item.pca, in);
 if (item.pca.nc() != item.m.nr())
 throw serialization_error("Error deserializing object of type vector_normalizer_pca\n" 
 "It looks like a serialized vector_normalizer was accidentally deserialized into \n"
 "a vector_normalizer_pca object.");
 }
 template <
 typename matrix_type
 >
 void serialize (
 const vector_normalizer_pca<matrix_type>& item, 
 std::ostream& out 
 )
 {
 serialize(item.m, out);
 serialize(item.sd, out);
 serialize(item.pca, out);
 }
// ----------------------------------------------------------------------------------------
 inline double binomial_random_vars_are_different (
 double k1,
 double n1,
 double k2,
 double n2
 )
 {
 DLIB_ASSERT(k1 <= n1, "k1: "<< k1 << " n1: "<< n1);
 DLIB_ASSERT(k2 <= n2, "k2: "<< k2 << " n2: "<< n2);
 const double p1 = n1 != 0 ? k1/n1 : 0;
 const double p2 = n2 != 0 ? k2/n2 : 0;
 const double p = (k1+k2)/(n1+n2);
 auto ll = [](double p, double k, double n) {
 if (p == 0 || p == 1)
 return 0.0;
 return k*std::log(p) + (n-k)*std::log(1-p);
 };
 auto logll = ll(p1,k1,n1) + ll(p2,k2,n2) - ll(p,k1,n1) - ll(p,k2,n2); 
 // The basic statistic only tells you if the random variables are different. But
 // it's nice to know which way they are different, i.e., which one is bigger. So
 // stuff that information into the sign bit of the return value.
 if (p1>=p2)
 return logll;
 else
 return -logll;
 }
// ----------------------------------------------------------------------------------------
 inline double event_correlation (
 double A_count,
 double B_count,
 double AB_count,
 double total_num_observations
 )
 {
 DLIB_ASSERT(AB_count <= A_count && A_count <= total_num_observations,
 "AB_count: " << AB_count << ", A_count: "<< A_count << ", total_num_observations: " << total_num_observations);
 DLIB_ASSERT(AB_count <= B_count && B_count <= total_num_observations,
 "AB_count: " << AB_count << ", B_count: "<< B_count << ", total_num_observations: " << total_num_observations);
 if (total_num_observations == 0)
 return 0;
 DLIB_ASSERT(A_count + B_count - AB_count <= total_num_observations,
 "AB_count: " << AB_count << " A_count: " << A_count << ", B_count: "<< B_count << ", total_num_observations: " << total_num_observations);
 const auto AnotB_count = A_count - AB_count;
 const auto notB_count = total_num_observations - B_count;
 // How likely is it that the odds of A happening is different when conditioned on
 // whether or not B happened?
 return binomial_random_vars_are_different( 
 AB_count, B_count, // A conditional on the presence of B
 AnotB_count, notB_count // A conditional on the absence of B 
 );
 }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_STATISTICs_

AltStyle によって変換されたページ (->オリジナル) /