dlib C++ Library - quantum_computing_abstract.h

// Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_QUANTUM_COMPUTINg_ABSTRACT_
#ifdef DLIB_QUANTUM_COMPUTINg_ABSTRACT_
#include <complex>
#include "../matrix.h"
#include "../rand.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
 typedef std::complex<double> qc_scalar_type;
// ----------------------------------------------------------------------------------------
 class quantum_register
 {
 /*!
 INITIAL VALUE
 - num_bits() == 1
 - state_vector().nr() == 2
 - state_vector().nc() == 1
 - state_vector()(0) == 1
 - state_vector()(1) == 0
 - probability_of_bit(0) == 0
 - i.e. This register represents a single quantum bit and it is
 completely in the 0 state.
 WHAT THIS OBJECT REPRESENTS
 This object represents a set of quantum bits.
 !*/
 public:
 quantum_register(
 );
 /*!
 ensures
 - this object is properly initialized
 !*/
 int num_bits (
 ) const;
 /*!
 ensures
 - returns the number of quantum bits in this register
 !*/
 void set_num_bits (
 int new_num_bits
 );
 /*!
 requires
 - 1 <= new_num_bits <= 30
 ensures
 - #num_bits() == new_num_bits
 - #state_vector().nr() == 2^new_num_bits
 (i.e. the size of the state_vector is exponential in the number of bits in a register)
 - for all valid i:
 - probability_of_bit(i) == 0
 !*/
 void zero_all_bits(
 );
 /*!
 ensures
 - for all valid i:
 - probability_of_bit(i) == 0
 !*/
 void append ( 
 const quantum_register& reg
 );
 /*!
 ensures
 - #num_bits() == num_bits() + reg.num_bits()
 - #this->state_vector() == tensor_product(this->state_vector(), reg.state_vector())
 - The original bits in *this become the high order bits of the resulting 
 register and all the bits in reg end up as the low order bits in the
 resulting register.
 !*/
 double probability_of_bit (
 int bit
 ) const;
 /*!
 requires
 - 0 <= bit < num_bits()
 ensures
 - returns the probability of measuring the given bit and it being in the 1 state.
 - The returned value is also equal to the sum of norm(state_vector()(i)) for all
 i where the bit'th bit in i is set to 1. (note that the lowest order bit is bit 0)
 !*/
 template <typename rand_type>
 bool measure_bit (
 int bit,
 rand_type& rnd
 );
 /*!
 requires
 - 0 <= bit < num_bits()
 - rand_type == an implementation of dlib/rand/rand_float_abstract.h
 ensures
 - measures the given bit in this register. Let R denote the boolean
 result of the measurement, where true means the bit was measured to
 have value 1 and false means it had a value of 0.
 - if (R == true) then
 - returns true
 - #probability_of_bit(bit) == 1
 - else
 - returns false
 - #probability_of_bit(bit) == 0
 !*/
 template <typename rand_type>
 bool measure_and_remove_bit (
 int bit,
 rand_type& rnd
 );
 /*!
 requires
 - num_bits() > 1
 - 0 <= bit < num_bits()
 - rand_type == an implementation of dlib/rand/rand_float_abstract.h
 ensures
 - measures the given bit in this register. Let R denote the boolean
 result of the measurement, where true means the bit was measured to
 have value 1 and false means it had a value of 0.
 - #num_bits() == num_bits() - 1
 - removes the bit that was measured from this register.
 - if (R == true) then
 - returns true
 - else
 - returns false
 !*/
 const matrix<qc_scalar_type,0,1>& state_vector(
 ) const;
 /*!
 ensures
 - returns a const reference to the state vector that describes the state of
 the quantum bits in this register.
 !*/
 matrix<qc_scalar_type,0,1>& state_vector(
 );
 /*!
 ensures
 - returns a non-const reference to the state vector that describes the state of
 the quantum bits in this register.
 !*/
 void swap (
 quantum_register& item
 );
 /*!
 ensures
 - swaps *this and item
 !*/
 };
 inline void swap (
 quantum_register& a,
 quantum_register& b
 ) { a.swap(b); }
 /*!
 provides a global swap function
 !*/
// ----------------------------------------------------------------------------------------
 template <typename T>
 class gate_exp
 {
 /*!
 REQUIREMENTS ON T
 T must be some object that inherits from gate_exp and implements its own
 version of operator() and compute_state_element().
 WHAT THIS OBJECT REPRESENTS
 This object represents an expression that evaluates to a quantum gate 
 that operates on T::num_bits qubits.
 This object makes it easy to create new types of gate objects. All
 you need to do is inherit from gate_exp in the proper way and 
 then you can use your new gate objects in conjunction with all the 
 others.
 !*/
 public:
 static const long num_bits = T::num_bits;
 static const long dims = T::dims; 
 gate_exp(
 T& exp
 );
 /*!
 ensures
 - #&ref() == &exp
 !*/
 const qc_scalar_type operator() (
 long r, 
 long c
 ) const;
 /*!
 requires
 - 0 <= r < dims
 - 0 <= c < dims
 ensures
 - returns ref()(r,c)
 !*/
 void apply_gate_to (
 quantum_register& reg
 ) const;
 /*!
 requires
 - reg.num_bits() == num_bits
 ensures
 - applies this quantum gate to the given quantum register
 - Let M represent the matrix for this quantum gate, then
 #reg().state_vector() = M*reg().state_vector()
 !*/
 template <typename exp>
 qc_scalar_type compute_state_element (
 const matrix_exp<exp>& reg,
 long row_idx
 ) const;
 /*!
 requires
 - reg.nr() == dims
 - reg.nc() == 1
 - 0 <= row_idx < dims
 ensures
 - Let M represent the matrix for this gate, then 
 this function returns rowm(M*reg, row_idx)
 (i.e. returns the row_idx row of what you get when you apply this
 gate to the given column vector in reg)
 - This function works by calling ref().compute_state_element(reg,row_idx)
 !*/
 const T& ref(
 );
 /*!
 ensures
 - returns a reference to the subexpression contained in this object
 !*/
 const matrix<qc_scalar_type> mat (
 ) const;
 /*!
 ensures
 - returns a dense matrix object that contains the matrix for this gate
 !*/
 };
// ----------------------------------------------------------------------------------------
 template <typename T, typename U>
 class composite_gate : public gate_exp<composite_gate<T,U> >
 {
 /*!
 REQUIREMENTS ON T AND U
 Both must be gate expressions that inherit from gate_exp
 WHAT THIS OBJECT REPRESENTS
 This object represents a quantum gate that is the tensor product of 
 two other quantum gates.
 As an example, suppose you have 3 registers, reg_high, reg_low, and reg_all. Also
 suppose that reg_all is what you get when you append reg_high and reg_low,
 so reg_all.state_vector() == tensor_product(reg_high.state_vector(),reg_low.state_vector()).
 
 Then applying a composite gate to reg_all would give you the same thing as
 applying the lhs gate to reg_high and the rhs gate to reg_low and then appending 
 the two resulting registers. So the lhs gate of a composite_gate applies to
 the high order bits of a regitser and the rhs gate applies to the lower order bits.
 !*/
 public:
 composite_gate (
 const composite_gate& g
 );
 /*!
 ensures
 - *this is a copy of g
 !*/
 composite_gate(
 const gate_exp<T>& lhs_, 
 const gate_exp<U>& rhs_
 ): 
 /*!
 ensures
 - #lhs == lhs_.ref()
 - #rhs == rhs_.ref()
 - #num_bits == T::num_bits + U::num_bits
 - #dims == 2^num_bits
 - #&ref() == this
 !*/
 const qc_scalar_type operator() (
 long r, 
 long c
 ) const; 
 /*!
 requires
 - 0 <= r < dims
 - 0 <= c < dims
 ensures
 - Let M denote the tensor product of lhs with rhs, then this function
 returns M(r,c)
 (i.e. returns lhs(r/U::dims,c/U::dims)*rhs(r%U::dims, c%U::dims))
 !*/
 template <typename exp>
 qc_scalar_type compute_state_element (
 const matrix_exp<exp>& reg,
 long row_idx
 ) const;
 /*!
 requires
 - reg.nr() == dims
 - reg.nc() == 1
 - 0 <= row_idx < dims
 ensures
 - Let M represent the matrix for this gate, then this function
 returns rowm(M*reg, row_idx)
 (i.e. returns the row_idx row of what you get when you apply this
 gate to the given column vector in reg)
 - This function works by calling rhs.compute_state_element() and using elements
 of the matrix in lhs. 
 !*/
 static const long num_bits;
 static const long dims;
 const T lhs;
 const U rhs;
 };
// ----------------------------------------------------------------------------------------
 template <long bits>
 class gate : public gate_exp<gate<bits> >
 {
 /*!
 REQUIREMENTS ON bits
 0 < bits <= 30
 WHAT THIS OBJECT REPRESENTS
 This object represents a quantum gate that operates on bits qubits. 
 It stores its gate matrix explicitly in a dense in-memory matrix. 
 !*/
 public:
 gate(
 );
 /*!
 ensures
 - num_bits == bits
 - dims == 2^bits
 - #&ref() == this
 - for all valid r and c:
 #(*this)(r,c) == 0
 !*/
 gate (
 const gate& g
 );
 /*!
 ensures
 - *this is a copy of g
 !*/
 template <typename T>
 explicit gate(
 const gate_exp<T>& g
 );
 /*!
 requires
 - T::num_bits == num_bits
 ensures
 - num_bits == bits
 - dims == 2^bits
 - #&ref() == this
 - for all valid r and c:
 #(*this)(r,c) == g(r,c)
 !*/
 const qc_scalar_type& operator() (
 long r, 
 long c
 ) const;
 /*!
 requires
 - 0 <= r < dims
 - 0 <= c < dims
 ensures
 - Let M denote the matrix for this gate, then this function
 returns a const reference to M(r,c)
 !*/
 qc_scalar_type& operator() (
 long r, 
 long c
 );
 /*!
 requires
 - 0 <= r < dims
 - 0 <= c < dims
 ensures
 - Let M denote the matrix for this gate, then this function 
 returns a non-const reference to M(r,c)
 !*/
 template <typename exp>
 qc_scalar_type compute_state_element (
 const matrix_exp<exp>& reg,
 long row_idx
 ) const;
 /*!
 requires
 - reg.nr() == dims
 - reg.nc() == 1
 - 0 <= row_idx < dims
 ensures
 - Let M represent the matrix for this gate, then this function
 returns rowm(M*reg, row_idx)
 (i.e. returns the row_idx row of what you get when you apply this
 gate to the given column vector in reg)
 !*/
 static const long num_bits;
 static const long dims;
 };
// ----------------------------------------------------------------------------------------
 template <typename T, typename U>
 const composite_gate<T,U> operator, ( 
 const gate_exp<T>& lhs,
 const gate_exp<U>& rhs
 ) { return composite_gate<T,U>(lhs,rhs); }
 /*!
 ensures
 - returns a composite_gate that represents the tensor product of the lhs
 gate with the rhs gate.
 !*/
// ----------------------------------------------------------------------------------------
 namespace quantum_gates
 {
 inline const gate<1> hadamard(
 );
 /*!
 ensures
 - returns the Hadamard gate.
 (i.e. A gate with a matrix of
 |1, 1|
 1/sqrt(2) * |1,-1| )
 !*/
 inline const gate<1> x(
 );
 /*!
 ensures
 - returns the not gate.
 (i.e. A gate with a matrix of
 |0, 1|
 |1, 0| )
 !*/
 inline const gate<1> y(
 );
 /*!
 ensures
 - returns the y gate.
 (i.e. A gate with a matrix of
 |0,-i|
 |i, 0| )
 !*/
 inline const gate<1> z(
 );
 /*!
 ensures
 - returns the z gate.
 (i.e. A gate with a matrix of
 |1, 0|
 |0,-1| )
 !*/
 inline const gate<1> noop(
 );
 /*!
 ensures
 - returns the no-op or identity gate.
 (i.e. A gate with a matrix of
 |1, 0|
 |0, 1| )
 !*/
 template <
 int control_bit,
 int target_bit
 >
 class cnot : public gate_exp<cnot<control_bit, target_bit> >
 {
 /*!
 REQUIREMENTS ON control_bit AND target_bit
 - control_bit != target_bit
 WHAT THIS OBJECT REPRESENTS
 This object represents the controlled-not quantum gate. It is a gate that
 operates on abs(control_bit-target_bit)+1 qubits. 
 In terms of the computational basis vectors, this gate maps input
 vectors to output vectors in the following way:
 - if (the input vector corresponds to a state where the control_bit
 qubit is 1) then
 - this gate outputs the computational basis vector that
 corresponds to the state where the target_bit has been flipped
 with respect to the input vector
 - else
 - this gate outputs the input vector unmodified
 !*/
 };
 template <
 int control_bit1,
 int control_bit2,
 int target_bit
 >
 class toffoli : public gate_exp<toffoli<control_bit1, control_bit2, target_bit> >
 {
 /*!
 REQUIREMENTS ON control_bit1, control_bit2, AND target_bit
 - all the arguments denote different bits, i.e.:
 - control_bit1 != target_bit
 - control_bit2 != target_bit
 - control_bit1 != control_bit2
 - The target bit can't be in-between the control bits, i.e.:
 - (control_bit1 < target_bit && control_bit2 < target_bit) ||
 (control_bit1 > target_bit && control_bit2 > target_bit) 
 WHAT THIS OBJECT REPRESENTS
 This object represents the toffoli variant of a controlled-not quantum gate. 
 It is a gate that operates on max(abs(control_bit2-target_bit),abs(control_bit1-target_bit))+1 
 qubits. 
 In terms of the computational basis vectors, this gate maps input
 vectors to output vectors in the following way:
 - if (the input vector corresponds to a state where the control_bit1 and
 control_bit2 qubits are 1) then
 - this gate outputs the computational basis vector that
 corresponds to the state where the target_bit has been flipped
 with respect to the input vector
 - else
 - this gate outputs the input vector unmodified
 !*/
 };
 // ------------------------------------------------------------------------------------
 }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_QUANTUM_COMPUTINg_ABSTRACT_

AltStyle によって変換されたページ (->オリジナル) /