dlib C++ Library - max_sum_submatrix.h

// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MAX_SUM_SUBMaTRIX_Hh_
#define DLIB_MAX_SUM_SUBMaTRIX_Hh_
#include "max_sum_submatrix_abstract.h"
#include "../matrix.h"
#include <vector>
#include <queue>
#include "../geometry.h"
namespace dlib
{
 namespace impl
 {
 // ------------------------------------------------------------------------------------
 template <typename T>
 struct range_set
 {
 int top_min;
 int top_max;
 int bottom_min;
 int bottom_max;
 T weight;
 bool operator<(const range_set& item) const { return weight < item.weight; }
 };
 // ------------------------------------------------------------------------------------
 template <typename T>
 bool is_terminal_set (
 const range_set<T>& item
 )
 {
 return (item.top_min >= item.top_max &&
 item.bottom_min >= item.bottom_max);
 }
 // ------------------------------------------------------------------------------------
 template <typename T>
 void split (
 const range_set<T>& rset,
 range_set<T>& a,
 range_set<T>& b
 )
 {
 if (rset.top_max - rset.top_min > rset.bottom_max - rset.bottom_min)
 {
 // split top
 const int middle = (rset.top_max + rset.top_min)/2;
 a.top_min = rset.top_min;
 a.top_max = middle;
 b.top_min = middle+1;
 b.top_max = rset.top_max;
 a.bottom_min = rset.bottom_min;
 a.bottom_max = rset.bottom_max;
 b.bottom_min = rset.bottom_min;
 b.bottom_max = rset.bottom_max;
 }
 else
 {
 // split bottom
 const int middle = (rset.bottom_max + rset.bottom_min)/2;
 a.bottom_min = rset.bottom_min;
 a.bottom_max = middle;
 b.bottom_min = middle+1;
 b.bottom_max = rset.bottom_max;
 a.top_min = rset.top_min;
 a.top_max = rset.top_max;
 b.top_min = rset.top_min;
 b.top_max = rset.top_max;
 }
 }
 // ------------------------------------------------------------------------------------
 template <typename EXP, typename T>
 void find_best_column_range (
 const matrix_exp<EXP>& sum_pos,
 const matrix_exp<EXP>& sum_neg,
 const range_set<T>& row_range,
 T& weight,
 int& left,
 int& right
 )
 {
 left = 0;
 right = -1;
 weight = 0;
 T cur_sum = 0;
 int cur_pos = 0;
 for (long c = 0; c < sum_pos.nc(); ++c)
 {
 // compute the value for the current column
 T temp = sum_pos(row_range.bottom_max+1,c) - sum_pos(row_range.top_min,c);
 if (row_range.top_max <= row_range.bottom_min)
 temp += sum_neg(row_range.bottom_min+1,c) - sum_neg(row_range.top_max,c);
 cur_sum += temp;
 if (cur_sum > weight)
 {
 left = cur_pos;
 right = c;
 weight = cur_sum;
 }
 if (cur_sum <= 0)
 {
 cur_sum = 0;
 cur_pos = c+1;
 }
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <typename EXP>
 std::vector<rectangle> max_sum_submatrix(
 const matrix_exp<EXP>& mat,
 unsigned long max_rects,
 double thresh_ = 0
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(thresh_ >= 0 && mat.size() > 0,
 "\t std::vector<rectangle> max_sum_submatrix()"
 << "\n\t Invalid arguments were given to this function."
 << "\n\t mat.size(): " << mat.size()
 << "\n\t thresh_: " << thresh_
 );
 /*
 This function is basically an implementation of the efficient subwindow search (I-ESS)
 algorithm presented in the following paper: 
 Efficient Algorithms for Subwindow Search in Object Detection and Localization
 by Senjian An, Patrick Peursum, Wanquan Liu and Svetha Venkatesh
 In CVPR 2009
 */
 if (max_rects == 0)
 return std::vector<rectangle>();
 using namespace dlib::impl;
 typedef typename EXP::type element_type;
 typedef typename promote<element_type>::type scalar_type;
 const scalar_type thresh = static_cast<scalar_type>(thresh_);
 matrix<scalar_type> sum_pos;
 matrix<scalar_type> sum_neg;
 sum_pos.set_size(mat.nr()+1, mat.nc());
 sum_neg.set_size(mat.nr()+1, mat.nc());
 // integrate over the rows. 
 for (long c = 0; c < mat.nc(); ++c)
 {
 sum_pos(0,c) = 0;
 sum_neg(0,c) = 0;
 }
 for (long r = 0; r < mat.nr(); ++r)
 {
 for (long c = 0; c < mat.nc(); ++c)
 {
 if (mat(r,c) > 0)
 {
 sum_pos(r+1,c) = mat(r,c) + sum_pos(r,c);
 sum_neg(r+1,c) = sum_neg(r,c);
 }
 else
 {
 sum_pos(r+1,c) = sum_pos(r,c);
 sum_neg(r+1,c) = mat(r,c) + sum_neg(r,c);
 }
 }
 }
 std::priority_queue<range_set<scalar_type> > q;
 // the range_sets will represent ranges of columns 
 range_set<scalar_type> universe_set;
 universe_set.bottom_min = 0;
 universe_set.top_min = 0;
 universe_set.bottom_max = mat.nr()-1;
 universe_set.top_max = mat.nr()-1;
 universe_set.weight = sum(rowm(dlib::mat(sum_pos),mat.nr()));
 q.push(universe_set);
 std::vector<rectangle> results;
 std::vector<scalar_type> temp_pos(mat.nc());
 std::vector<scalar_type> temp_neg(mat.nc());
 while (q.size() > 0)
 {
 if (is_terminal_set(q.top()))
 {
 int left, right;
 scalar_type weight;
 find_best_column_range(sum_pos, sum_neg, q.top(), weight, left, right);
 rectangle rect(left, q.top().top_min, 
 right, q.top().bottom_min);
 if (weight <= thresh)
 break;
 results.push_back(rect);
 if (results.size() >= max_rects)
 break;
 q = std::priority_queue<range_set<scalar_type> >();
 // We are going to blank out the weights we just used. So adjust the sum images appropriately.
 for (long c = rect.left(); c <= rect.right(); ++c)
 {
 temp_pos[c] = sum_pos(rect.bottom()+1,c) - sum_pos(rect.top(),c);
 temp_neg[c] = sum_neg(rect.bottom()+1,c) - sum_neg(rect.top(),c);
 }
 // blank out the area inside the rectangle
 for (long r = rect.top(); r <= rect.bottom(); ++r)
 {
 for (long c = rect.left(); c <= rect.right(); ++c)
 {
 sum_pos(r+1,c) = sum_pos(r,c);
 sum_neg(r+1,c) = sum_neg(r,c);
 }
 }
 // account for the area below the rectangle
 for (long r = rect.bottom()+2; r < sum_pos.nr(); ++r)
 {
 for (long c = rect.left(); c <= rect.right(); ++c)
 {
 sum_pos(r,c) -= temp_pos[c];
 sum_neg(r,c) -= temp_neg[c];
 }
 }
 universe_set.weight = sum(rowm(dlib::mat(sum_pos),mat.nr()));
 if (universe_set.weight <= thresh)
 break;
 q.push(universe_set);
 continue;
 }
 range_set<scalar_type> a, b;
 split(q.top(), a,b);
 q.pop();
 // these variables are not used at this point in the algorithm.
 int a_left, a_right;
 int b_left, b_right;
 find_best_column_range(sum_pos, sum_neg, a, a.weight, a_left, a_right);
 find_best_column_range(sum_pos, sum_neg, b, b.weight, b_left, b_right);
 if (a.weight > thresh)
 q.push(a);
 if (b.weight > thresh)
 q.push(b);
 }
 return results;
 }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MAX_SUM_SUBMaTRIX_Hh_

AltStyle によって変換されたページ (->オリジナル) /