dlib C++ Library - edge_detector.h

// Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_EDGE_DETECTOr_
#define DLIB_EDGE_DETECTOr_
#include "edge_detector_abstract.h"
#include "../pixel.h"
#include "../array2d.h"
#include "../geometry.h"
#include <vector>
#include "../image_keypoint/build_separable_poly_filters.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 inline char edge_orientation (
 const T& x_,
 const T& y_
 )
 {
 // if this is a perfectly horizontal gradient then return right away
 if (x_ == 0)
 {
 return '|';
 }
 else if (y_ == 0) // if this is a perfectly vertical gradient then return right away
 {
 return '-';
 }
 // Promote x so that when we multiply by 128 later we know overflow won't happen.
 typedef typename promote<T>::type type;
 type x = x_;
 type y = y_;
 if (x < 0)
 {
 x = -x;
 if (y < 0)
 {
 y = -y;
 x *= 128;
 const type temp = x/y;
 if (temp > 309)
 return '-';
 else if (temp > 53)
 return '/';
 else
 return '|';
 }
 else
 {
 x *= 128;
 const type temp = x/y;
 if (temp > 309)
 return '-';
 else if (temp > 53)
 return '\\';
 else
 return '|';
 }
 }
 else
 {
 if (y < 0)
 {
 y = -y;
 x *= 128;
 const type temp = x/y;
 if (temp > 309)
 return '-';
 else if (temp > 53)
 return '\\';
 else
 return '|';
 }
 else
 {
 x *= 128;
 const type temp = x/y;
 if (temp > 309)
 return '-';
 else if (temp > 53)
 return '/';
 else
 return '|';
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename in_image_type,
 typename out_image_type
 >
 void sobel_edge_detector (
 const in_image_type& in_img_,
 out_image_type& horz_,
 out_image_type& vert_
 )
 {
 typedef typename image_traits<out_image_type>::pixel_type pixel_type;
 COMPILE_TIME_ASSERT(pixel_traits<pixel_type>::is_unsigned == false);
 DLIB_ASSERT( !is_same_object(in_img_,horz_) && !is_same_object(in_img_,vert_) &&
 !is_same_object(horz_,vert_),
 "\tvoid sobel_edge_detector(in_img_, horz_, vert_)"
 << "\n\t You can't give the same image as more than one argument"
 << "\n\t is_same_object(in_img_,horz_): " << is_same_object(in_img_,horz_)
 << "\n\t is_same_object(in_img_,vert_): " << is_same_object(in_img_,vert_)
 << "\n\t is_same_object(horz_,vert_): " << is_same_object(horz_,vert_)
 );
 const int vert_filter[3][3] = {{-1,-2,-1}, 
 {0,0,0}, 
 {1,2,1}};
 const int horz_filter[3][3] = { {-1,0,1}, 
 {-2,0,2}, 
 {-1,0,1}};
 const long M = 3;
 const long N = 3;
 const_image_view<in_image_type> in_img(in_img_);
 image_view<out_image_type> horz(horz_);
 image_view<out_image_type> vert(vert_);
 horz.set_size(in_img.nr(),in_img.nc());
 vert.set_size(in_img.nr(),in_img.nc());
 assign_border_pixels(horz,1,1,0);
 assign_border_pixels(vert,1,1,0);
 // figure out the range that we should apply the filter to
 const long first_row = M/2;
 const long first_col = N/2;
 const long last_row = in_img.nr() - M/2;
 const long last_col = in_img.nc() - N/2;
 // apply the filter to the image
 for (long r = first_row; r < last_row; ++r)
 {
 for (long c = first_col; c < last_col; ++c)
 {
 typedef typename pixel_traits<typename image_traits<in_image_type>::pixel_type>::basic_pixel_type bp_type;
 typename promote<bp_type>::type p, horz_temp, vert_temp;
 horz_temp = 0;
 vert_temp = 0;
 for (long m = 0; m < M; ++m)
 {
 for (long n = 0; n < N; ++n)
 {
 // pull out the current pixel and put it into p
 p = get_pixel_intensity(in_img[r-M/2+m][c-N/2+n]);
 horz_temp += p*horz_filter[m][n];
 vert_temp += p*vert_filter[m][n];
 }
 }
 assign_pixel(horz[r][c] , horz_temp);
 assign_pixel(vert[r][c] , vert_temp);
 }
 }
 }
// ----------------------------------------------------------------------------------------
 namespace impl
 {
 template <typename T>
 typename promote<T>::type square (const T& a)
 { 
 return static_cast<T>(a)*static_cast<T>(a); 
 }
 }
 template <
 typename in_image_type,
 typename out_image_type
 >
 void suppress_non_maximum_edges (
 const in_image_type& horz_,
 const in_image_type& vert_,
 out_image_type& out_img_
 )
 {
 const_image_view<in_image_type> horz(horz_);
 const_image_view<in_image_type> vert(vert_);
 image_view<out_image_type> out_img(out_img_);
 COMPILE_TIME_ASSERT(is_signed_type<typename image_traits<in_image_type>::pixel_type>::value);
 DLIB_ASSERT( horz.nr() == vert.nr() && horz.nc() == vert.nc(),
 "\tvoid suppress_non_maximum_edges(horz, vert, out_img)"
 << "\n\tYou have to give horz and vert gradient images that are the same size"
 << "\n\thorz.nr(): " << horz.nr() 
 << "\n\thorz.nc(): " << horz.nc() 
 << "\n\tvert.nr(): " << vert.nr() 
 << "\n\tvert.nc(): " << vert.nc() 
 );
 DLIB_ASSERT( !is_same_object(out_img_,horz_) && !is_same_object(out_img_,vert_),
 "\tvoid suppress_non_maximum_edges(horz_, vert_, out_img_)"
 << "\n\t out_img can't be the same as one of the input images."
 << "\n\t is_same_object(out_img_,horz_): " << is_same_object(out_img_,horz_)
 << "\n\t is_same_object(out_img_,vert_): " << is_same_object(out_img_,vert_)
 );
 using std::min;
 using std::abs;
 // if there isn't any input image then don't do anything
 if (horz.size() == 0)
 {
 out_img.clear();
 return;
 }
 out_img.set_size(horz.nr(),horz.nc());
 zero_border_pixels(out_img,1,1);
 // now do non maximum suppression while we copy the 
 const long M = 3;
 const long N = 3;
 // figure out the range that we should apply the filter to
 const long first_row = M/2;
 const long first_col = N/2;
 const long last_row = horz.nr() - M/2;
 const long last_col = horz.nc() - N/2;
 // apply the filter to the image
 for (long r = first_row; r < last_row; ++r)
 {
 for (long c = first_col; c < last_col; ++c)
 {
 typedef typename promote<typename image_traits<in_image_type>::pixel_type>::type T;
 const T y = horz[r][c];
 const T x = vert[r][c];
 using impl::square;
 const T val = square(horz[r][c]) + square(vert[r][c]); 
 const char ori = edge_orientation(x,y);
 const unsigned char zero = 0;
 switch (ori)
 {
 case '-':
 if (square(horz[r-1][c])+square(vert[r-1][c]) > val || square(horz[r+1][c]) + square(vert[r+1][c]) > val)
 assign_pixel(out_img[r][c] , zero);
 else
 assign_pixel(out_img[r][c] , std::sqrt((double)val));
 break;
 case '|':
 if (square(horz[r][c-1]) + square(vert[r][c-1]) > val || square(horz[r][c+1]) + square(vert[r][c+1]) > val)
 assign_pixel(out_img[r][c] , zero);
 else
 assign_pixel(out_img[r][c] , std::sqrt((double)val));
 break;
 case '/':
 if (square(horz[r-1][c-1]) + square(vert[r-1][c-1]) > val || square(horz[r+1][c+1]) + square(vert[r+1][c+1]) > val)
 assign_pixel(out_img[r][c] , zero);
 else
 assign_pixel(out_img[r][c] , std::sqrt((double)val));
 break;
 case '\\':
 if (square(horz[r+1][c-1]) + square(vert[r+1][c-1]) > val || square(horz[r-1][c+1]) + square(vert[r-1][c+1]) > val)
 assign_pixel(out_img[r][c] , zero);
 else
 assign_pixel(out_img[r][c] , std::sqrt((double)val));
 break;
 }
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename image_type
 >
 void normalize_image_gradients (
 image_type& img1_,
 image_type& img2_
 )
 {
 image_view<image_type> img1(img1_);
 image_view<image_type> img2(img2_);
 using pixel_type = typename image_traits<image_type>::pixel_type;
 static_assert(std::is_same<pixel_type,float>::value || 
 std::is_same<pixel_type,double>::value ||
 std::is_same<pixel_type,long double>::value, 
 "normalize_image_gradients() requires the input images to use floating point pixel types.");
 DLIB_CASSERT(img1.nr() == img2.nr());
 DLIB_CASSERT(img1.nc() == img2.nc());
 // normalize all the gradients
 for (long r = 0; r < img1.nr(); ++r)
 {
 for (long c = 0; c < img1.nc(); ++c)
 {
 if (img1[r][c] != 0 || img2[r][c] != 0)
 {
 double len = std::sqrt(img1[r][c]*img1[r][c] + img2[r][c]*img2[r][c]);
 img1[r][c] /= len;
 img2[r][c] /= len;
 }
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename image_type
 >
 std::vector<point> remove_incoherent_edge_pixels (
 const std::vector<point>& line,
 const image_type& horz_gradient_,
 const image_type& vert_gradient_,
 double angle_threshold
 )
 {
 const_image_view<image_type> horz_gradient(horz_gradient_);
 const_image_view<image_type> vert_gradient(vert_gradient_);
 DLIB_CASSERT(horz_gradient.nr() == vert_gradient.nr());
 DLIB_CASSERT(horz_gradient.nc() == vert_gradient.nc());
 DLIB_CASSERT(angle_threshold >= 0);
#ifdef ENABLE_ASSERTS
 for (auto& p : line)
 DLIB_ASSERT(get_rect(horz_gradient).contains(p), "All line points must be inside the given images.");
#endif
 // We make sure that each vector is within this threshold of the mean vector. So
 // to make sure they are pairwise within the user supplied angel threshold we need
 // to divide by 2 before we proceed.
 angle_threshold /= 2;
 const double dotthresh = std::cos(angle_threshold*pi/180);
 // find the average gradient on this line
 dpoint avg;
 for (auto p : line)
 avg += dpoint(horz_gradient[p.y()][p.x()], vert_gradient[p.y()][p.x()]);
 dpoint ref = avg.normalize();
 // now iterate a few times and find the most common average gradient.
 for (int i = 0; i < 10; ++i)
 {
 avg = dpoint();
 for (auto p : line)
 {
 const dpoint v(horz_gradient[p.y()][p.x()], vert_gradient[p.y()][p.x()]);
 const double dp = ref.dot(v);
 if (dp > dotthresh)
 avg += v;
 else if (-dp > dotthresh)
 avg -= v;
 }
 ref = avg.normalize();
 }
 // now remove all the points that deviate from the average gradient too much.
 std::vector<point> newpixels;
 for (auto p : line)
 {
 dpoint v(horz_gradient[p.y()][p.x()], vert_gradient[p.y()][p.x()]);
 if (std::abs(ref.dot(v)) > dotthresh)
 newpixels.push_back(p);
 }
 return newpixels;
 }
 template <
 typename image_type
 >
 std::vector<std::vector<point>> remove_incoherent_edge_pixels (
 const std::vector<std::vector<point>>& line_pixels,
 const image_type& horz_gradient_,
 const image_type& vert_gradient_,
 const double angle_threshold
 )
 {
 std::vector<std::vector<point>> temp;
 temp.reserve(line_pixels.size());
 for (auto& line : line_pixels)
 temp.emplace_back(remove_incoherent_edge_pixels(line, horz_gradient_, vert_gradient_, angle_threshold));
 return temp;
 }
// ----------------------------------------------------------------------------------------
 class image_gradients
 {
 public:
 image_gradients (
 ) : image_gradients(1) {}
 image_gradients (
 long scale
 ) : the_scale(scale)
 {
 DLIB_CASSERT(scale >= 1);
 scale = 2*scale+1;
 auto dfilters = build_separable_poly_filters(2,scale); 
 DLIB_CASSERT(dfilters[1].size() == 1);
 DLIB_CASSERT(dfilters[2].size() == 1);
 DLIB_CASSERT(dfilters[3].size() == 1);
 DLIB_CASSERT(dfilters[4].size() == 1);
 DLIB_CASSERT(dfilters[5].size() == 1);
 filter_x.first = matrix_cast<float>(dfilters[1][0].first);
 filter_x.second = matrix_cast<float>(dfilters[1][0].second);
 filter_y.first = matrix_cast<float>(dfilters[2][0].first);
 filter_y.second = matrix_cast<float>(dfilters[2][0].second);
 // We multiply by 2 so that the filter gives the gradient rather than the x^2
 // polynomial coefficient.
 filter_xx.first = 2*matrix_cast<float>(dfilters[3][0].first);
 filter_xx.second = matrix_cast<float>(dfilters[3][0].second);
 filter_xy.first = matrix_cast<float>(dfilters[4][0].first);
 filter_xy.second = matrix_cast<float>(dfilters[4][0].second);
 // We multiply by 2 so that the filter gives the gradient rather than the y^2
 // polynomial coefficient.
 filter_yy.first = 2*matrix_cast<float>(dfilters[5][0].first);
 filter_yy.second = matrix_cast<float>(dfilters[5][0].second);
 }
 long get_scale() const { return the_scale; }
 template <
 typename in_image_type,
 typename out_image_type
 >
 rectangle gradient_x(
 const in_image_type& img,
 out_image_type& out
 ) const 
 { 
 return spatially_filter_image_separable(img, out, filter_x.second, filter_x.first); 
 }
 template <
 typename in_image_type,
 typename out_image_type
 >
 rectangle gradient_y(
 const in_image_type& img,
 out_image_type& out
 ) const 
 { 
 return spatially_filter_image_separable(img, out, filter_y.second, filter_y.first); 
 }
 template <
 typename in_image_type,
 typename out_image_type
 >
 rectangle gradient_xx(
 const in_image_type& img,
 out_image_type& out
 ) const
 { 
 return spatially_filter_image_separable(img, out, filter_xx.second, filter_xx.first); 
 }
 template <
 typename in_image_type,
 typename out_image_type
 >
 rectangle gradient_xy(
 const in_image_type& img,
 out_image_type& out
 ) const 
 { 
 return spatially_filter_image_separable(img, out, filter_xy.second, filter_xy.first); 
 }
 template <
 typename in_image_type,
 typename out_image_type
 >
 rectangle gradient_yy(
 const in_image_type& img,
 out_image_type& out
 ) const
 { 
 return spatially_filter_image_separable(img, out, filter_yy.second, filter_yy.first); 
 }
 matrix<float> get_x_filter() const { return filter_x.first*trans(filter_x.second); }
 matrix<float> get_y_filter() const { return filter_y.first*trans(filter_y.second); }
 matrix<float> get_xx_filter() const { return filter_xx.first*trans(filter_xx.second); }
 matrix<float> get_xy_filter() const { return filter_xy.first*trans(filter_xy.second); }
 matrix<float> get_yy_filter() const { return filter_yy.first*trans(filter_yy.second); }
 private:
 std::pair<matrix<float,0,1>,matrix<float,0,1>> filter_x;
 std::pair<matrix<float,0,1>,matrix<float,0,1>> filter_y;
 std::pair<matrix<float,0,1>,matrix<float,0,1>> filter_xx;
 std::pair<matrix<float,0,1>,matrix<float,0,1>> filter_xy;
 std::pair<matrix<float,0,1>,matrix<float,0,1>> filter_yy;
 long the_scale;
 };
// ----------------------------------------------------------------------------------------
 namespace impl
 {
 template <
 typename in_image_type,
 typename out_image_type
 >
 void find_lines(
 const in_image_type& xx_,
 const in_image_type& xy_,
 const in_image_type& yy_,
 out_image_type& horz_,
 out_image_type& vert_,
 double positive_if_should_find_dark_lines
 )
 {
 typedef typename image_traits<out_image_type>::pixel_type out_pixel_type;
 static_assert(std::is_same<float,out_pixel_type>::value || std::is_same<double,out_pixel_type>::value,
 "Output images must contain either float or double valued pixels");
 const_image_view<in_image_type> xx(xx_);
 const_image_view<in_image_type> xy(xy_);
 const_image_view<in_image_type> yy(yy_);
 DLIB_CASSERT(xx.nr() == xy.nr());
 DLIB_CASSERT(xx.nr() == yy.nr());
 DLIB_CASSERT(xx.nc() == xy.nc());
 DLIB_CASSERT(xx.nc() == yy.nc());
 image_view<out_image_type> x(horz_);
 image_view<out_image_type> y(vert_);
 x.set_size(xx.nr(), xx.nc());
 y.set_size(xx.nr(), xx.nc());
 // store the max eigenvalue into xy and then the associated eigen vector into [xx,yy]
 for (long r = 0; r < xx.nr(); ++r)
 {
 for (long c = 0; c < xx.nc(); ++c)
 {
 // negate to that lambda will be the *minimum* eigenvalue
 double w1 = positive_if_should_find_dark_lines*xx[r][c]/2.0;
 double w2 = positive_if_should_find_dark_lines*yy[r][c]/2.0;
 double w3 = positive_if_should_find_dark_lines*xy[r][c];
 auto lambda = w1 + w2 + std::sqrt((w1-w2)*(w1-w2) + w3*w3);
 if (lambda < 0)
 lambda = 0;
 if (2*w1!=lambda)
 {
 x[r][c] = -w3/(2*w1-lambda);
 y[r][c] = 1;
 double norm = std::sqrt(x[r][c]*x[r][c] + y[r][c]*y[r][c]);
 x[r][c] *= lambda/norm;
 y[r][c] *= lambda/norm;
 }
 else
 {
 x[r][c] = lambda;
 y[r][c] = 0;
 }
 }
 }
 }
 }
 template <
 typename in_image_type,
 typename out_image_type
 >
 void find_bright_lines(
 const in_image_type& xx,
 const in_image_type& xy,
 const in_image_type& yy,
 out_image_type& horz,
 out_image_type& vert
 )
 {
 impl::find_lines(xx,xy,yy,horz,vert,-1);
 }
 template <
 typename in_image_type,
 typename out_image_type
 >
 void find_dark_lines(
 const in_image_type& xx,
 const in_image_type& xy,
 const in_image_type& yy,
 out_image_type& horz,
 out_image_type& vert
 )
 {
 impl::find_lines(xx,xy,yy,horz,vert,+1);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename in_image_type,
 typename out_image_type
 >
 void find_bright_keypoints(
 const in_image_type& xx_,
 const in_image_type& xy_,
 const in_image_type& yy_,
 out_image_type& saliency_
 )
 {
 typedef typename image_traits<out_image_type>::pixel_type out_pixel_type;
 static_assert(std::is_same<float,out_pixel_type>::value || std::is_same<double,out_pixel_type>::value,
 "Output images must contain either float or double valued pixels");
 const_image_view<in_image_type> xx(xx_);
 const_image_view<in_image_type> xy(xy_);
 const_image_view<in_image_type> yy(yy_);
 DLIB_CASSERT(xx.nr() == xy.nr());
 DLIB_CASSERT(xx.nr() == yy.nr());
 DLIB_CASSERT(xx.nc() == xy.nc());
 DLIB_CASSERT(xx.nc() == yy.nc());
 image_view<out_image_type> saliency(saliency_);
 saliency.set_size(xx.nr(), xx.nc());
 for (long r = 0; r < xx.nr(); ++r)
 {
 for (long c = 0; c < xx.nc(); ++c)
 {
 matrix<double,2,2> tmp;
 tmp = xx[r][c], xy[r][c],
 xy[r][c], yy[r][c];
 matrix<double,2,1> e = real_eigenvalues(tmp);
 saliency[r][c] = prod(upperbound(e,0));
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename in_image_type,
 typename out_image_type
 >
 void find_dark_keypoints(
 const in_image_type& xx_,
 const in_image_type& xy_,
 const in_image_type& yy_,
 out_image_type& saliency_
 )
 {
 typedef typename image_traits<out_image_type>::pixel_type out_pixel_type;
 static_assert(std::is_same<float,out_pixel_type>::value || std::is_same<double,out_pixel_type>::value,
 "Output images must contain either float or double valued pixels");
 const_image_view<in_image_type> xx(xx_);
 const_image_view<in_image_type> xy(xy_);
 const_image_view<in_image_type> yy(yy_);
 DLIB_CASSERT(xx.nr() == xy.nr());
 DLIB_CASSERT(xx.nr() == yy.nr());
 DLIB_CASSERT(xx.nc() == xy.nc());
 DLIB_CASSERT(xx.nc() == yy.nc());
 image_view<out_image_type> saliency(saliency_);
 saliency.set_size(xx.nr(), xx.nc());
 for (long r = 0; r < xx.nr(); ++r)
 {
 for (long c = 0; c < xx.nc(); ++c)
 {
 matrix<double,2,2> tmp;
 tmp = xx[r][c], xy[r][c],
 xy[r][c], yy[r][c];
 matrix<double,2,1> e = real_eigenvalues(tmp);
 saliency[r][c] = prod(lowerbound(e,0));
 }
 }
 }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_EDGE_DETECTOr_

AltStyle によって変換されたページ (->オリジナル) /