dlib C++ Library - graph_utils.h

// Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_GRAPH_UTILs_
#define DLIB_GRAPH_UTILs_
#include "../algs.h"
#include <vector>
#include "graph_utils_abstract.h"
#include "../is_kind.h"
#include "../enable_if.h"
#include <algorithm>
#include "../set.h"
#include "../memory_manager.h"
#include "../set_utils.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
 template <typename T>
 typename enable_if<is_graph<T>,typename T::edge_type>::type& edge(
 T& g, 
 unsigned long idx_i, 
 unsigned long idx_j
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(g.has_edge(idx_i,idx_j) == true,
 "\tT::edge_type& edge(g, idx_i, idx_j)"
 << "\n\t you have requested an invalid edge"
 << "\n\t idx_i: " << idx_i
 << "\n\t idx_j: " << idx_j 
 );
 for (unsigned long i = 0; i < g.node(idx_i).number_of_neighbors(); ++i)
 {
 if (g.node(idx_i).neighbor(i).index() == idx_j)
 return g.node(idx_i).edge(i);
 }
 // put this here just so compilers don't complain about a lack of
 // a return here
 DLIB_CASSERT(false,
 "\tT::edge_type& edge(g, idx_i, idx_j)"
 << "\n\t you have requested an invalid edge"
 << "\n\t idx_i: " << idx_i
 << "\n\t idx_j: " << idx_j 
 );
 }
 template <typename T>
 const typename enable_if<is_graph<T>,typename T::edge_type>::type& edge(
 const T& g, 
 unsigned long idx_i,
 unsigned long idx_j
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(g.has_edge(idx_i,idx_j) == true,
 "\tT::edge_type& edge(g, idx_i, idx_j)"
 << "\n\t you have requested an invalid edge"
 << "\n\t idx_i: " << idx_i
 << "\n\t idx_j: " << idx_j 
 );
 for (unsigned long i = 0; i < g.node(idx_i).number_of_neighbors(); ++i)
 {
 if (g.node(idx_i).neighbor(i).index() == idx_j)
 return g.node(idx_i).edge(i);
 }
 // put this here just so compilers don't complain about a lack of
 // a return here
 DLIB_CASSERT(false,
 "\tT::edge_type& edge(g, idx_i, idx_j)"
 << "\n\t you have requested an invalid edge"
 << "\n\t idx_i: " << idx_i
 << "\n\t idx_j: " << idx_j 
 );
 }
// ----------------------------------------------------------------------------------------
 
 template <typename T>
 typename enable_if<is_directed_graph<T>,typename T::edge_type>::type& edge(
 T& g, 
 unsigned long parent_idx, 
 unsigned long child_idx 
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(g.has_edge(parent_idx,child_idx) == true,
 "\t T::edge_type& edge(g, parent_idx, child_idx)"
 << "\n\t you have requested an invalid edge"
 << "\n\t parent_idx: " << parent_idx
 << "\n\t child_idx: " << child_idx 
 );
 for (unsigned long i = 0; i < g.node(parent_idx).number_of_children(); ++i)
 {
 if (g.node(parent_idx).child(i).index() == child_idx)
 return g.node(parent_idx).child_edge(i);
 }
 // put this here just so compilers don't complain about a lack of
 // a return here
 DLIB_CASSERT(false,
 "\t T::edge_type& edge(g, parent_idx, child_idx)"
 << "\n\t you have requested an invalid edge"
 << "\n\t parent_idx: " << parent_idx
 << "\n\t child_idx: " << child_idx 
 );
 }
 template <typename T>
 const typename enable_if<is_directed_graph<T>,typename T::edge_type>::type& edge(
 const T& g, 
 unsigned long parent_idx, 
 unsigned long child_idx 
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(g.has_edge(parent_idx,child_idx) == true,
 "\t T::edge_type& edge(g, parent_idx, child_idx)"
 << "\n\t you have requested an invalid edge"
 << "\n\t parent_idx: " << parent_idx
 << "\n\t child_idx: " << child_idx 
 );
 for (unsigned long i = 0; i < g.node(parent_idx).number_of_children(); ++i)
 {
 if (g.node(parent_idx).child(i).index() == child_idx)
 return g.node(parent_idx).child_edge(i);
 }
 // put this here just so compilers don't complain about a lack of
 // a return here
 DLIB_ASSERT(false,
 "\t T::edge_type& edge(g, parent_idx, child_idx)"
 << "\n\t you have requested an invalid edge"
 << "\n\t parent_idx: " << parent_idx
 << "\n\t child_idx: " << child_idx 
 );
 }
// ----------------------------------------------------------------------------------------
 
 namespace graph_helpers 
 {
 template <typename T, typename U>
 inline bool is_same_object (
 const T& a,
 const U& b
 )
 {
 if (is_same_type<const T,const U>::value == false)
 return false;
 if ((void*)&a == (void*)&b)
 return true;
 else
 return false;
 }
 template <
 typename T
 >
 bool search_for_directed_cycles (
 const T& node,
 std::vector<bool>& visited,
 std::vector<bool>& temp
 )
 /*!
 requires
 - visited.size() >= number of nodes in the graph that contains the given node 
 - temp.size() >= number of nodes in the graph that contains the given node 
 - for all i in temp: 
 - temp[i] == false
 ensures
 - checks the connected subgraph containing the given node for directed cycles
 and returns true if any are found and false otherwise.
 - for all nodes N in the connected subgraph containing the given node:
 - #visited[N.index()] == true
 - for all i in temp: 
 - #temp[i] == false
 !*/
 {
 if (temp[node.index()] == true)
 return true;
 visited[node.index()] = true;
 temp[node.index()] = true;
 for (unsigned long i = 0; i < node.number_of_children(); ++i)
 {
 if (search_for_directed_cycles(node.child(i), visited, temp))
 return true;
 }
 
 temp[node.index()] = false;
 return false;
 }
 // ------------------------------------------------------------------------------------
 template <
 typename T
 >
 typename enable_if<is_directed_graph<typename T::graph_type>,bool>::type search_for_undirected_cycles (
 const T& node,
 std::vector<bool>& visited,
 unsigned long prev = std::numeric_limits<unsigned long>::max()
 )
 /*!
 requires
 - visited.size() >= number of nodes in the graph that contains the given node 
 - for all nodes N in the connected subgraph containing the given node:
 - visited[N.index] == false
 ensures
 - checks the connected subgraph containing the given node for directed cycles
 and returns true if any are found and false otherwise.
 - for all nodes N in the connected subgraph containing the given node:
 - #visited[N.index()] == true
 !*/
 {
 if (visited[node.index()] == true)
 return true;
 visited[node.index()] = true;
 for (unsigned long i = 0; i < node.number_of_children(); ++i)
 {
 if (node.child(i).index() != prev && 
 search_for_undirected_cycles(node.child(i), visited, node.index()))
 return true;
 }
 
 for (unsigned long i = 0; i < node.number_of_parents(); ++i)
 {
 if (node.parent(i).index() != prev && 
 search_for_undirected_cycles(node.parent(i), visited, node.index()))
 return true;
 }
 return false;
 }
 // ------------------------------------------------------------------------------------
 template <
 typename T
 >
 typename enable_if<is_graph<typename T::graph_type>,bool>::type search_for_undirected_cycles (
 const T& node,
 std::vector<bool>& visited,
 unsigned long prev = std::numeric_limits<unsigned long>::max()
 )
 /*!
 requires
 - visited.size() >= number of nodes in the graph that contains the given node 
 - for all nodes N in the connected subgraph containing the given node:
 - visited[N.index] == false
 ensures
 - checks the connected subgraph containing the given node for directed cycles
 and returns true if any are found and false otherwise.
 - for all nodes N in the connected subgraph containing the given node:
 - #visited[N.index()] == true
 !*/
 {
 if (visited[node.index()] == true)
 return true;
 visited[node.index()] = true;
 for (unsigned long i = 0; i < node.number_of_neighbors(); ++i)
 {
 if (node.neighbor(i).index() != prev && 
 search_for_undirected_cycles(node.neighbor(i), visited, node.index()))
 return true;
 }
 
 return false;
 }
 }
// ------------------------------------------------------------------------------------
 template <
 typename graph_type1,
 typename graph_type2
 >
 typename enable_if<is_graph<graph_type1> >::type copy_graph_structure (
 const graph_type1& src,
 graph_type2& dest
 )
 {
 COMPILE_TIME_ASSERT(is_graph<graph_type1>::value);
 COMPILE_TIME_ASSERT(is_graph<graph_type2>::value);
 if (graph_helpers::is_same_object(src,dest))
 return;
 dest.clear();
 dest.set_number_of_nodes(src.number_of_nodes());
 // copy all the edges from src into dest 
 for (unsigned long i = 0; i < src.number_of_nodes(); ++i)
 {
 for (unsigned long j = 0; j < src.node(i).number_of_neighbors(); ++j)
 {
 const unsigned long nidx = src.node(i).neighbor(j).index();
 if (nidx >= i)
 {
 dest.add_edge(i,nidx);
 }
 }
 }
 }
 template <
 typename graph_type1,
 typename graph_type2
 >
 typename enable_if<is_directed_graph<graph_type1> >::type copy_graph_structure (
 const graph_type1& src,
 graph_type2& dest
 )
 {
 COMPILE_TIME_ASSERT(is_directed_graph<graph_type1>::value);
 COMPILE_TIME_ASSERT(is_directed_graph<graph_type2>::value || is_graph<graph_type2>::value );
 if (graph_helpers::is_same_object(src,dest))
 return;
 dest.clear();
 dest.set_number_of_nodes(src.number_of_nodes());
 // copy all the edges from src into dest 
 for (unsigned long i = 0; i < src.number_of_nodes(); ++i)
 {
 for (unsigned long j = 0; j < src.node(i).number_of_children(); ++j)
 {
 const unsigned long nidx = src.node(i).child(j).index();
 if (dest.has_edge(i,nidx) == false)
 {
 dest.add_edge(i,nidx);
 }
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename graph_type1,
 typename graph_type2
 >
 typename enable_if<is_graph<graph_type1> >::type copy_graph (
 const graph_type1& src,
 graph_type2& dest
 )
 {
 COMPILE_TIME_ASSERT(is_graph<graph_type1>::value);
 COMPILE_TIME_ASSERT(is_graph<graph_type2>::value);
 if (graph_helpers::is_same_object(src,dest))
 return;
 copy_graph_structure(src,dest);
 // copy all the node and edge content 
 for (unsigned long i = 0; i < src.number_of_nodes(); ++i)
 {
 dest.node(i).data = src.node(i).data;
 for (unsigned long j = 0; j < src.node(i).number_of_neighbors(); ++j)
 {
 const unsigned long nidx = src.node(i).neighbor(j).index();
 if (nidx >= i)
 {
 dest.node(i).edge(j) = src.node(i).edge(j);
 }
 }
 }
 }
 template <
 typename graph_type1,
 typename graph_type2
 >
 typename enable_if<is_directed_graph<graph_type1> >::type copy_graph (
 const graph_type1& src,
 graph_type2& dest
 )
 {
 COMPILE_TIME_ASSERT(is_directed_graph<graph_type1>::value);
 COMPILE_TIME_ASSERT(is_directed_graph<graph_type2>::value);
 if (graph_helpers::is_same_object(src,dest))
 return;
 copy_graph_structure(src,dest);
 // copy all the node and edge content 
 for (unsigned long i = 0; i < src.number_of_nodes(); ++i)
 {
 dest.node(i).data = src.node(i).data;
 for (unsigned long j = 0; j < src.node(i).number_of_children(); ++j)
 {
 dest.node(i).child_edge(j) = src.node(i).child_edge(j);
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T,
 typename S
 >
 typename enable_if<is_graph<typename T::graph_type> >::type find_connected_nodes (
 const T& n,
 S& visited
 )
 {
 if (visited.is_member(n.index()) == false)
 {
 unsigned long temp = n.index();
 visited.add(temp);
 for (unsigned long i = 0; i < n.number_of_neighbors(); ++i)
 find_connected_nodes(n.neighbor(i), visited);
 }
 }
 template <
 typename T,
 typename S
 >
 typename enable_if<is_directed_graph<typename T::graph_type> >::type find_connected_nodes (
 const T& n,
 S& visited
 )
 {
 if (visited.is_member(n.index()) == false)
 {
 unsigned long temp = n.index();
 visited.add(temp);
 for (unsigned long i = 0; i < n.number_of_parents(); ++i)
 find_connected_nodes(n.parent(i), visited);
 for (unsigned long i = 0; i < n.number_of_children(); ++i)
 find_connected_nodes(n.child(i), visited);
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T 
 >
 bool graph_is_connected (
 const T& g
 )
 {
 if (g.number_of_nodes() == 0)
 return true;
 set<unsigned long>::kernel_1b_c visited;
 find_connected_nodes(g.node(0), visited);
 return (visited.size() == g.number_of_nodes());
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 bool graph_has_symmetric_edges (
 const T& graph
 )
 {
 for (unsigned long i = 0; i < graph.number_of_nodes(); ++i)
 {
 for (unsigned long j = 0; j < graph.node(i).number_of_children(); ++j)
 {
 const unsigned long jj = graph.node(i).child(j).index();
 // make sure every edge from a parent to a child has an edge linking back
 if (graph.has_edge(jj,i) == false)
 return false;
 }
 for (unsigned long j = 0; j < graph.node(i).number_of_parents(); ++j)
 {
 const unsigned long jj = graph.node(i).parent(j).index();
 // make sure every edge from a child to a parent has an edge linking back
 if (graph.has_edge(i,jj) == false)
 return false;
 }
 }
 return true;
 }
// ----------------------------------------------------------------------------------------
 
 template <
 typename T
 >
 bool graph_contains_directed_cycle (
 const T& graph
 )
 {
 using namespace graph_helpers;
 std::vector<bool> visited(graph.number_of_nodes(), false);
 std::vector<bool> temp(graph.number_of_nodes(), false);
 while (true)
 {
 // find the first node that hasn't been visited yet
 unsigned long i;
 for (i = 0; i < visited.size(); ++i)
 {
 if (visited[i] == false)
 break;
 }
 // if we didn't find any non-visited nodes then we are done
 if (i == visited.size())
 return false;
 if (search_for_directed_cycles(graph.node(i), visited, temp))
 return true;
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 bool graph_contains_undirected_cycle (
 const T& graph
 )
 {
 using namespace graph_helpers;
 std::vector<bool> visited(graph.number_of_nodes(), false);
 while (true)
 {
 // find the first node that hasn't been visited yet
 unsigned long i;
 for (i = 0; i < visited.size(); ++i)
 {
 if (visited[i] == false)
 break;
 }
 // if we didn't find any non-visited nodes then we are done
 if (i == visited.size())
 return false;
 if (search_for_undirected_cycles(graph.node(i), visited))
 return true;
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename directed_graph_type,
 typename graph_type
 >
 void create_moral_graph (
 const directed_graph_type& g,
 graph_type& moral_graph
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(graph_contains_directed_cycle(g) == false,
 "\tvoid create_moral_graph(g, moral_graph)"
 << "\n\tYou can only make moral graphs if g doesn't have directed cycles"
 );
 COMPILE_TIME_ASSERT(is_graph<graph_type>::value);
 COMPILE_TIME_ASSERT(is_directed_graph<directed_graph_type>::value);
 copy_graph_structure(g, moral_graph);
 // now marry all the parents (i.e. add edges between parent nodes)
 for (unsigned long i = 0; i < g.number_of_nodes(); ++i)
 {
 // loop over all combinations of parents of g.node(i)
 for (unsigned long j = 0; j < g.node(i).number_of_parents(); ++j)
 {
 for (unsigned long k = 0; k < g.node(i).number_of_parents(); ++k)
 {
 const unsigned long p1 = g.node(i).parent(j).index();
 const unsigned long p2 = g.node(i).parent(k).index();
 if (p1 == p2)
 continue;
 if (moral_graph.has_edge(p1,p2) == false)
 moral_graph.add_edge(p1,p2);
 }
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename graph_type,
 typename sets_of_int
 >
 bool is_clique (
 const graph_type& g,
 const sets_of_int& clique
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(graph_contains_length_one_cycle(g) == false,
 "\tvoid is_clique(g, clique)"
 << "\n\tinvalid graph"
 );
#ifdef ENABLE_ASSERTS
 clique.reset();
 while (clique.move_next())
 {
 const unsigned long x = clique.element();
 DLIB_ASSERT( x < g.number_of_nodes(), 
 "\tvoid is_clique(g, clique)"
 << "\n\tthe clique set contained an invalid node index"
 << "\n\tx: " << x 
 << "\n\tg.number_of_nodes(): " << g.number_of_nodes()
 );
 }
#endif
 COMPILE_TIME_ASSERT(is_graph<graph_type>::value);
 std::vector<unsigned long> v;
 v.reserve(clique.size());
 clique.reset();
 while (clique.move_next())
 {
 v.push_back(clique.element());
 }
 for (unsigned long i = 0; i < v.size(); ++i)
 {
 for (unsigned long j = 0; j < v.size(); ++j)
 {
 if (v[i] == v[j])
 continue;
 if (g.has_edge(v[i], v[j]) == false)
 return false;
 }
 }
 return true;
 }
// ----------------------------------------------------------------------------------------
 template <
 typename graph_type,
 typename sets_of_int
 >
 bool is_maximal_clique (
 const graph_type& g,
 const sets_of_int& clique
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(graph_contains_length_one_cycle(g) == false,
 "\tvoid is_maximal_clique(g, clique)"
 << "\n\tinvalid graph"
 );
 DLIB_ASSERT(is_clique(g,clique) == true,
 "\tvoid is_maximal_clique(g, clique)"
 << "\n\tinvalid graph"
 );
#ifdef ENABLE_ASSERTS
 clique.reset();
 while (clique.move_next())
 {
 const unsigned long x = clique.element();
 DLIB_ASSERT( x < g.number_of_nodes(), 
 "\tvoid is_maximal_clique(g, clique)"
 << "\n\tthe clique set contained an invalid node index"
 << "\n\tx: " << x 
 << "\n\tg.number_of_nodes(): " << g.number_of_nodes()
 );
 }
#endif
 COMPILE_TIME_ASSERT(is_graph<graph_type>::value);
 if (clique.size() == 0)
 return true;
 // get an element in the clique and make sure that
 // none of its neighbors that aren't in the clique are connected 
 // to all the elements of the clique.
 clique.reset();
 clique.move_next();
 const unsigned long idx = clique.element();
 for (unsigned long i = 0; i < g.node(idx).number_of_neighbors(); ++i)
 {
 const unsigned long n = g.node(idx).neighbor(i).index();
 if (clique.is_member(n))
 continue;
 // now loop over all the clique members and make sure they don't all
 // share an edge with node n
 bool all_share_edge = true;
 clique.reset();
 while (clique.move_next())
 {
 if (g.has_edge(clique.element(), n) == false)
 {
 all_share_edge = false;
 break;
 }
 }
 if (all_share_edge == true)
 return false;
 }
 return true;
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 typename enable_if<is_directed_graph<T>,bool>::type graph_contains_length_one_cycle (
 const T& graph
 )
 {
 for (unsigned long i = 0; i < graph.number_of_nodes(); ++i)
 {
 // make sure none of this guys children are actually itself
 for (unsigned long n = 0; n < graph.node(i).number_of_children(); ++n)
 {
 if (graph.node(i).child(n).index() == i)
 return true;
 }
 }
 return false;
 }
// ----------------------------------------------------------------------------------------
 template <
 typename T
 >
 typename enable_if<is_graph<T>,bool>::type graph_contains_length_one_cycle (
 const T& graph
 )
 {
 for (unsigned long i = 0; i < graph.number_of_nodes(); ++i)
 {
 // make sure none of this guys neighbors are actually itself
 for (unsigned long n = 0; n < graph.node(i).number_of_neighbors(); ++n)
 {
 if (graph.node(i).neighbor(n).index() == i)
 return true;
 }
 }
 return false;
 }
// ----------------------------------------------------------------------------------------
 namespace graph_helpers
 {
 struct pair
 {
 unsigned long index;
 unsigned long num_neighbors;
 bool operator< (const pair& p) const { return num_neighbors < p.num_neighbors; }
 };
 template <
 typename T,
 typename S,
 typename V
 >
 void search_graph_for_triangulate (
 const T& n,
 S& visited,
 V& order_visited
 )
 {
 // base case of recursion. stop when we hit a node we have
 // already visited.
 if (visited.is_member(n.index()))
 return;
 // record that we have visited this node
 order_visited.push_back(n.index());
 unsigned long temp = n.index();
 visited.add(temp);
 // we want to visit all the neighbors of this node but do
 // so by visiting the nodes with the most neighbors first. So
 // lets make a vector that lists the nodes in the order we 
 // want to visit them
 std::vector<pair> neighbors;
 for (unsigned long i = 0; i < n.number_of_neighbors(); ++i)
 {
 pair p;
 p.index = i;
 p.num_neighbors = n.neighbor(i).number_of_neighbors();
 neighbors.push_back(p);
 }
 // now sort the neighbors array so that the neighbors with the
 // most neighbors come first.
 std::sort(neighbors.rbegin(), neighbors.rend());
 // now visit all the nodes
 for (unsigned long i = 0; i < neighbors.size(); ++i)
 {
 search_graph_for_triangulate(n.neighbor(neighbors[i].index), visited, order_visited);
 }
 }
 } // end namespace graph_helpers
 template <
 typename graph_type,
 typename set_of_sets_of_int
 >
 void triangulate_graph_and_find_cliques (
 graph_type& g,
 set_of_sets_of_int& cliques
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(graph_contains_length_one_cycle(g) == false,
 "\tvoid triangulate_graph_and_find_cliques(g, cliques)"
 << "\n\tInvalid graph"
 );
 DLIB_ASSERT(graph_is_connected(g) == true,
 "\tvoid triangulate_graph_and_find_cliques(g, cliques)"
 << "\n\tInvalid graph"
 );
 COMPILE_TIME_ASSERT(is_graph<graph_type>::value);
 using namespace graph_helpers;
 typedef typename set_of_sets_of_int::type set_of_int;
 cliques.clear();
 // first we find the node with the most neighbors
 unsigned long max_index = 0;
 unsigned long num_neighbors = 0;
 for (unsigned long i = 0; i < g.number_of_nodes(); ++i)
 {
 if (g.node(i).number_of_neighbors() > num_neighbors)
 {
 max_index = i;
 num_neighbors = g.node(i).number_of_neighbors();
 }
 }
 // now we do a depth first search of the entire graph starting
 // with the node we just found. We record the order in which
 // we visit each node in the vector order_visited.
 std::vector<unsigned long> order_visited;
 set_of_int visited;
 search_graph_for_triangulate(g.node(max_index), visited, order_visited);
 set_of_int clique;
 // now add edges to the graph to make it triangulated 
 while (visited.size() > 0)
 {
 // we are going to enumerate over the nodes in the reverse of the
 // order in which they were visited. So get the last node out.
 const unsigned long idx = order_visited.back();
 order_visited.pop_back();
 visited.destroy(idx);
 // as a start add this node to our current clique
 unsigned long temp = idx;
 clique.clear();
 clique.add(temp);
 // now we want to make a clique that contains node g.node(idx) and
 // all of its neighbors that are still recorded in the visited set 
 // (except for neighbors that have only one edge).
 for (unsigned long i = 0; i < g.node(idx).number_of_neighbors(); ++i)
 {
 // get the index of the i'th neighbor
 unsigned long nidx = g.node(idx).neighbor(i).index();
 // add it to the clique if it is still in visited and it isn't
 // a node with only one neighbor
 if (visited.is_member(nidx) == true && 
 g.node(nidx).number_of_neighbors() != 1)
 {
 // add edges between this new node and all the nodes 
 // that are already in the clique
 clique.reset();
 while (clique.move_next())
 {
 if (g.has_edge(nidx, clique.element()) == false)
 g.add_edge(nidx, clique.element());
 }
 // now also record that we added this node to the clique
 clique.add(nidx);
 }
 }
 if (cliques.is_member(clique) == false && is_maximal_clique(g,clique) )
 {
 cliques.add(clique);
 }
 // now it is possible that we are missing some cliques of size 2 since
 // above we didn't add nodes with only one edge to any of our cliques.
 // Now lets make sure all these nodes are accounted for
 for (unsigned long i = 0; i < g.number_of_nodes(); ++i)
 {
 clique.clear();
 if (g.node(i).number_of_neighbors() == 1)
 {
 unsigned long temp = i;
 clique.add(temp);
 temp = g.node(i).neighbor(0).index();
 clique.add(temp);
 if (cliques.is_member(clique) == false)
 cliques.add(clique);
 }
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename graph_type,
 typename join_tree_type
 >
 void create_join_tree (
 const graph_type& g,
 join_tree_type& join_tree
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(graph_contains_length_one_cycle(g) == false,
 "\tvoid create_join_tree(g, join_tree)"
 << "\n\tInvalid graph"
 );
 DLIB_ASSERT(graph_is_connected(g) == true,
 "\tvoid create_join_tree(g, join_tree)"
 << "\n\tInvalid graph"
 );
 COMPILE_TIME_ASSERT(is_graph<graph_type>::value);
 COMPILE_TIME_ASSERT(is_graph<join_tree_type>::value);
 typedef typename join_tree_type::type set_of_int;
 typedef typename join_tree_type::edge_type set_of_int_edge;
 typedef typename set<set_of_int>::kernel_1b_c set_of_sets_of_int;
 copy_graph_structure(g, join_tree);
 // don't even bother in this case
 if (g.number_of_nodes() == 0)
 return;
 set_of_sets_of_int cliques;
 set_of_int s;
 triangulate_graph_and_find_cliques(join_tree, cliques);
 join_tree.set_number_of_nodes(cliques.size());
 // copy the cliques into each of the nodes of tree
 for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i)
 {
 cliques.remove_any(s);
 s.swap(join_tree.node(i).data);
 }
 set_of_int_edge e;
 // add all possible edges to the join_tree
 for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i)
 {
 for (unsigned long j = i+1; j < join_tree.number_of_nodes(); ++j)
 {
 set_intersection(
 join_tree.node(i).data,
 join_tree.node(j).data,
 e);
 if (e.size() > 0)
 {
 join_tree.add_edge(i,j);
 edge(join_tree,i,j).swap(e);
 }
 }
 }
 // now we just need to remove the unnecessary edges so that we get a 
 // proper join tree
 s.clear();
 set_of_int& good = s; // rename s to something slightly more meaningful
 // good will contain nodes that have been "approved"
 unsigned long n = 0;
 good.add(n);
 std::vector<unsigned long> vtemp;
 while (good.size() < join_tree.number_of_nodes())
 {
 // figure out which of the neighbors of nodes in good has the best edge
 unsigned long best_bad_idx = 0;
 unsigned long best_good_idx = 0;
 unsigned long best_overlap = 0;
 good.reset();
 while (good.move_next())
 {
 // loop over all the neighbors of the current node in good
 for (unsigned long i = 0; i < join_tree.node(good.element()).number_of_neighbors(); ++i)
 {
 const unsigned long idx = join_tree.node(good.element()).neighbor(i).index();
 if (!good.is_member(idx))
 {
 const unsigned long overlap = join_tree.node(good.element()).edge(i).size();
 if (overlap > best_overlap)
 {
 best_overlap = overlap;
 best_bad_idx = idx;
 best_good_idx = good.element();
 }
 }
 }
 }
 // now remove all the edges from best_bad_idx to the nodes in good except for the
 // edge to best_good_idx.
 for (unsigned long i = 0; i < join_tree.node(best_bad_idx).number_of_neighbors(); ++i)
 {
 const unsigned long idx = join_tree.node(best_bad_idx).neighbor(i).index();
 if (idx != best_good_idx && good.is_member(idx))
 {
 vtemp.push_back(idx);
 }
 }
 for (unsigned long i = 0; i < vtemp.size(); ++i)
 join_tree.remove_edge(vtemp[i], best_bad_idx);
 vtemp.clear();
 // and finally add this bad index into the good set
 good.add(best_bad_idx);
 }
 }
// ----------------------------------------------------------------------------------------
 namespace graph_helpers
 {
 template <
 typename T,
 typename U
 >
 bool validate_join_tree (
 const T& n,
 U& deads,
 unsigned long parent = 0xffffffff
 )
 /*!
 this function makes sure that a join tree satisfies the following criterion for paths starting at the given node:
 - for all valid i and j such that i and j are both < #join_tree.number_of_nodes()
 - let X be the set of numbers that is contained in both #join_tree.node(i).data
 and #join_tree.node(j).data
 - It is the case that all nodes on the unique path between #join_tree.node(i)
 and #join_tree.node(j) contain the numbers from X in their sets.
 returns true if validation passed and false if there is a problem with the tree
 !*/
 {
 n.data.reset();
 while (n.data.move_next())
 {
 if (deads.is_member(n.data.element()))
 return false;
 }
 for (unsigned long i = 0; i < n.number_of_neighbors(); ++i)
 {
 if (n.neighbor(i).index() == parent)
 continue;
 // add anything to dead stuff
 n.data.reset();
 while (n.data.move_next())
 {
 if (n.neighbor(i).data.is_member(n.data.element()) == false)
 {
 unsigned long temp = n.data.element();
 deads.add(temp);
 }
 }
 if (validate_join_tree(n.neighbor(i), deads, n.index()) == false)
 return false;
 // remove this nodes stuff from dead stuff
 n.data.reset();
 while (n.data.move_next())
 {
 if (n.neighbor(i).data.is_member(n.data.element()) == false)
 {
 unsigned long temp = n.data.element();
 deads.destroy(temp);
 }
 }
 }
 return true;
 }
 }
 template <
 typename graph_type,
 typename join_tree_type
 >
 bool is_join_tree (
 const graph_type& g,
 const join_tree_type& join_tree
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(graph_contains_length_one_cycle(g) == false,
 "\tvoid create_join_tree(g, join_tree)"
 << "\n\tInvalid graph"
 );
 DLIB_ASSERT(graph_is_connected(g) == true,
 "\tvoid create_join_tree(g, join_tree)"
 << "\n\tInvalid graph"
 );
 COMPILE_TIME_ASSERT(is_graph<graph_type>::value || is_directed_graph<graph_type>::value);
 COMPILE_TIME_ASSERT(is_graph<join_tree_type>::value);
 if (graph_contains_undirected_cycle(join_tree))
 return false;
 if (graph_is_connected(join_tree) == false)
 return false;
 // verify that the path condition of the join tree is valid
 for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i)
 {
 typename join_tree_type::type deads;
 if (graph_helpers::validate_join_tree(join_tree.node(i), deads) == false)
 return false;
 }
 typename join_tree_type::edge_type e;
 typename join_tree_type::edge_type all;
 // now make sure that the edges contain correct intersections
 for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i)
 {
 set_union(all,join_tree.node(i).data, all);
 for (unsigned long j = 0; j < join_tree.node(i).number_of_neighbors(); ++j)
 {
 set_intersection(join_tree.node(i).data,
 join_tree.node(i).neighbor(j).data,
 e);
 if (!(e == join_tree.node(i).edge(j)))
 return false;
 }
 }
 // and finally check that all the nodes in g show up in the join tree 
 if (all.size() != g.number_of_nodes())
 return false;
 all.reset();
 while (all.move_next())
 {
 if (all.element() >= g.number_of_nodes())
 return false;
 }
 return true;
 }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_GRAPH_UTILs_

AltStyle によって変換されたページ (->オリジナル) /