dlib C++ Library - edge_list_graphs.h

// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_EDGE_LIST_GrAPHS_Hh_
#define DLIB_EDGE_LIST_GrAPHS_Hh_
#include "edge_list_graphs_abstract.h"
#include <limits>
#include <vector>
#include "../string.h"
#include "../rand.h"
#include <algorithm>
#include "sample_pair.h"
#include "ordered_sample_pair.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type
 >
 void remove_duplicate_edges (
 vector_type& pairs
 )
 {
 typedef typename vector_type::value_type T;
 if (pairs.size() > 0)
 {
 // sort pairs so that we can avoid duplicates in the loop below
 std::sort(pairs.begin(), pairs.end(), &order_by_index<T>);
 // now put edges into temp while avoiding duplicates
 vector_type temp;
 temp.reserve(pairs.size());
 temp.push_back(pairs[0]);
 for (unsigned long i = 1; i < pairs.size(); ++i)
 {
 if (pairs[i] != pairs[i-1])
 {
 temp.push_back(pairs[i]);
 }
 }
 temp.swap(pairs);
 }
 }
// ----------------------------------------------------------------------------------------
 namespace impl
 {
 template <typename iterator>
 iterator iterator_of_worst (
 iterator begin,
 const iterator& end
 ) 
 /*!
 ensures
 - returns an iterator that points to the element in the given range 
 that has the biggest distance 
 !*/
 {
 double dist = begin->distance();
 iterator worst = begin;
 for (; begin != end; ++begin)
 {
 if (begin->distance() > dist)
 {
 dist = begin->distance();
 worst = begin;
 }
 }
 return worst;
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type,
 typename distance_function_type,
 typename alloc,
 typename T
 >
 void find_percent_shortest_edges_randomly (
 const vector_type& samples,
 const distance_function_type& dist_funct,
 const double percent,
 const unsigned long num,
 const T& random_seed,
 std::vector<sample_pair, alloc>& out
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( 0 < percent && percent <= 1 &&
 num > 0,
 "\t void find_percent_shortest_edges_randomly()"
 << "\n\t Invalid inputs were given to this function."
 << "\n\t samples.size(): " << samples.size()
 << "\n\t percent: " << percent 
 << "\n\t num: " << num 
 );
 out.clear();
 if (samples.size() <= 1)
 {
 return;
 }
 std::vector<sample_pair, alloc> edges;
 edges.reserve(num);
 dlib::rand rnd;
 rnd.set_seed(cast_to_string(random_seed));
 // randomly sample a bunch of edges
 for (unsigned long i = 0; i < num; ++i)
 {
 const unsigned long idx1 = rnd.get_random_32bit_number()%samples.size();
 const unsigned long idx2 = rnd.get_random_32bit_number()%samples.size();
 if (idx1 != idx2)
 {
 const double dist = dist_funct(samples[idx1], samples[idx2]);
 if (dist < std::numeric_limits<double>::infinity())
 {
 edges.push_back(sample_pair(idx1, idx2, dist));
 }
 }
 }
 // now put edges into out while avoiding duplicates
 if (edges.size() > 0)
 {
 remove_duplicate_edges(edges);
 // now sort all the edges by distance and take the percent with the smallest distance
 std::sort(edges.begin(), edges.end(), &order_by_distance<sample_pair>);
 const unsigned long out_size = std::min<unsigned long>((unsigned long)(num*percent), edges.size());
 out.assign(edges.begin(), edges.begin() + out_size);
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type,
 typename distance_function_type,
 typename alloc,
 typename T
 >
 void find_approximate_k_nearest_neighbors (
 const vector_type& samples,
 const distance_function_type& dist_funct,
 const unsigned long k,
 unsigned long num,
 const T& random_seed,
 std::vector<sample_pair, alloc>& out
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( num > 0 && k > 0,
 "\t void find_approximate_k_nearest_neighbors()"
 << "\n\t Invalid inputs were given to this function."
 << "\n\t samples.size(): " << samples.size()
 << "\n\t k: " << k 
 << "\n\t num: " << num 
 );
 out.clear();
 if (samples.size() <= 1)
 {
 return;
 }
 // we add each edge twice in the following loop. So multiply num by 2 to account for that.
 num *= 2;
 std::vector<ordered_sample_pair> edges;
 edges.reserve(num);
 std::vector<sample_pair, alloc> temp;
 temp.reserve(num);
 dlib::rand rnd;
 rnd.set_seed(cast_to_string(random_seed));
 // randomly sample a bunch of edges
 for (unsigned long i = 0; i < num; ++i)
 {
 const unsigned long idx1 = rnd.get_random_32bit_number()%samples.size();
 const unsigned long idx2 = rnd.get_random_32bit_number()%samples.size();
 if (idx1 != idx2)
 {
 const double dist = dist_funct(samples[idx1], samples[idx2]);
 if (dist < std::numeric_limits<double>::infinity())
 {
 edges.push_back(ordered_sample_pair(idx1, idx2, dist));
 edges.push_back(ordered_sample_pair(idx2, idx1, dist));
 }
 }
 }
 std::sort(edges.begin(), edges.end(), &order_by_index<ordered_sample_pair>);
 std::vector<ordered_sample_pair>::iterator beg, itr;
 // now copy edges into temp when they aren't duplicates and also only move in the k shortest for
 // each index.
 itr = edges.begin();
 while (itr != edges.end())
 {
 // first find the bounding range for all the edges connected to node itr->index1()
 beg = itr; 
 while (itr != edges.end() && itr->index1() == beg->index1())
 ++itr;
 // If the node has more than k edges then sort them by distance so that
 // we will end up with the k best.
 if (static_cast<unsigned long>(itr - beg) > k)
 {
 std::sort(beg, itr, &order_by_distance_and_index<ordered_sample_pair>);
 }
 // take the k best unique edges from the range [beg,itr)
 temp.push_back(sample_pair(beg->index1(), beg->index2(), beg->distance()));
 unsigned long prev_index2 = beg->index2();
 ++beg;
 unsigned long count = 1;
 for (; beg != itr && count < k; ++beg)
 {
 if (beg->index2() != prev_index2)
 {
 temp.push_back(sample_pair(beg->index1(), beg->index2(), beg->distance()));
 ++count;
 }
 prev_index2 = beg->index2();
 }
 }
 remove_duplicate_edges(temp);
 temp.swap(out);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type,
 typename distance_function_type,
 typename alloc
 >
 void find_k_nearest_neighbors (
 const vector_type& samples,
 const distance_function_type& dist_funct,
 const unsigned long k,
 std::vector<sample_pair, alloc>& out
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(k > 0,
 "\t void find_k_nearest_neighbors()"
 << "\n\t Invalid inputs were given to this function."
 << "\n\t samples.size(): " << samples.size()
 << "\n\t k: " << k 
 );
 out.clear();
 if (samples.size() <= 1)
 {
 return;
 }
 using namespace impl;
 std::vector<sample_pair> edges;
 // Initialize all the edges to an edge with an invalid index
 edges.resize(samples.size()*k, 
 sample_pair(samples.size(),samples.size(),std::numeric_limits<double>::infinity()));
 // Hold the length for the longest edge for each node. Initially they are all infinity.
 std::vector<double> worst_dists(samples.size(), std::numeric_limits<double>::infinity());
 std::vector<sample_pair>::iterator begin_i, end_i, begin_j, end_j;
 begin_i = edges.begin();
 end_i = begin_i + k;
 // Loop over all combinations of samples. We will maintain the iterator ranges so that
 // within the inner for loop we have:
 // [begin_i, end_i) == the range in edges that contains neighbors of samples[i]
 // [begin_j, end_j) == the range in edges that contains neighbors of samples[j]
 for (unsigned long i = 0; i+1 < samples.size(); ++i)
 {
 begin_j = begin_i;
 end_j = end_i;
 for (unsigned long j = i+1; j < samples.size(); ++j)
 {
 begin_j += k;
 end_j += k;
 const double dist = dist_funct(samples[i], samples[j]);
 if (dist < worst_dists[i])
 {
 *iterator_of_worst(begin_i, end_i) = sample_pair(i, j, dist);
 worst_dists[i] = iterator_of_worst(begin_i, end_i)->distance();
 }
 if (dist < worst_dists[j])
 {
 *iterator_of_worst(begin_j, end_j) = sample_pair(i, j, dist);
 worst_dists[j] = iterator_of_worst(begin_j, end_j)->distance();
 }
 }
 begin_i += k;
 end_i += k;
 }
 // sort the edges so that duplicate edges will be adjacent
 std::sort(edges.begin(), edges.end(), &order_by_index<sample_pair>);
 // if the first edge is valid 
 if (edges[0].index1() < samples.size())
 {
 // now put edges into out while avoiding duplicates and any remaining invalid edges.
 out.reserve(edges.size());
 out.push_back(edges[0]);
 for (unsigned long i = 1; i < edges.size(); ++i)
 {
 // if we hit an invalid edge then we can stop
 if (edges[i].index1() >= samples.size())
 break;
 // if this isn't a duplicate edge
 if (edges[i] != edges[i-1])
 {
 out.push_back(edges[i]);
 }
 }
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type
 >
 bool contains_duplicate_pairs (
 const vector_type& pairs
 )
 {
 typedef typename vector_type::value_type T;
 vector_type temp(pairs);
 std::sort(temp.begin(), temp.end(), &order_by_index<T>);
 for (unsigned long i = 1; i < temp.size(); ++i)
 {
 // if we found a duplicate
 if (temp[i-1] == temp[i])
 return true;
 }
 return false;
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type 
 >
 typename enable_if_c<(is_same_type<sample_pair, typename vector_type::value_type>::value ||
 is_same_type<ordered_sample_pair, typename vector_type::value_type>::value),
 unsigned long>::type
 max_index_plus_one (
 const vector_type& pairs
 )
 {
 if (pairs.size() == 0)
 {
 return 0;
 }
 else
 {
 unsigned long max_idx = 0;
 for (unsigned long i = 0; i < pairs.size(); ++i)
 {
 if (pairs[i].index1() > max_idx)
 max_idx = pairs[i].index1();
 if (pairs[i].index2() > max_idx)
 max_idx = pairs[i].index2();
 }
 return max_idx + 1;
 }
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type
 >
 void remove_long_edges (
 vector_type& pairs,
 double distance_threshold
 )
 {
 vector_type temp;
 temp.reserve(pairs.size());
 // add all the pairs shorter than the given threshold into temp
 for (unsigned long i = 0; i < pairs.size(); ++i)
 {
 if (pairs[i].distance() <= distance_threshold)
 temp.push_back(pairs[i]);
 }
 // move temp into the output vector
 temp.swap(pairs);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type
 >
 void remove_short_edges (
 vector_type& pairs,
 double distance_threshold
 )
 {
 vector_type temp;
 temp.reserve(pairs.size());
 // add all the pairs longer than the given threshold into temp
 for (unsigned long i = 0; i < pairs.size(); ++i)
 {
 if (pairs[i].distance() >= distance_threshold)
 temp.push_back(pairs[i]);
 }
 // move temp into the output vector
 temp.swap(pairs);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type
 >
 void remove_percent_longest_edges (
 vector_type& pairs,
 double percent 
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( 0 <= percent && percent < 1,
 "\t void remove_percent_longest_edges()"
 << "\n\t Invalid inputs were given to this function."
 << "\n\t percent: " << percent 
 );
 typedef typename vector_type::value_type T;
 std::sort(pairs.begin(), pairs.end(), &order_by_distance<T>);
 const unsigned long num = static_cast<unsigned long>((1.0-percent)*pairs.size());
 // pick out the num shortest pairs
 vector_type temp(pairs.begin(), pairs.begin() + num);
 // move temp into the output vector
 temp.swap(pairs);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type
 >
 void remove_percent_shortest_edges (
 vector_type& pairs,
 double percent 
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT( 0 <= percent && percent < 1,
 "\t void remove_percent_shortest_edges()"
 << "\n\t Invalid inputs were given to this function."
 << "\n\t percent: " << percent 
 );
 typedef typename vector_type::value_type T;
 std::sort(pairs.rbegin(), pairs.rend(), &order_by_distance<T>);
 const unsigned long num = static_cast<unsigned long>((1.0-percent)*pairs.size());
 // pick out the num shortest pairs
 vector_type temp(pairs.begin(), pairs.begin() + num);
 // move temp into the output vector
 temp.swap(pairs);
 }
// ----------------------------------------------------------------------------------------
 template <
 typename vector_type
 >
 bool is_ordered_by_index (
 const vector_type& edges
 )
 {
 for (unsigned long i = 1; i < edges.size(); ++i)
 {
 if (order_by_index(edges[i], edges[i-1]))
 return false;
 }
 return true;
 }
// ----------------------------------------------------------------------------------------
 template <
 typename alloc1, 
 typename alloc2
 >
 void find_neighbor_ranges (
 const std::vector<ordered_sample_pair,alloc1>& edges,
 std::vector<std::pair<unsigned long, unsigned long>,alloc2>& neighbors
 )
 {
 // make sure requires clause is not broken
 DLIB_ASSERT(is_ordered_by_index(edges),
 "\t void find_neighbor_ranges()"
 << "\n\t Invalid inputs were given to this function"
 );
 // setup neighbors so that [neighbors[i].first, neighbors[i].second) is the range
 // within edges that contains all node i's edges.
 const unsigned long num_nodes = max_index_plus_one(edges);
 neighbors.assign(num_nodes, std::make_pair(0,0));
 unsigned long cur_node = 0;
 unsigned long start_idx = 0;
 for (unsigned long i = 0; i < edges.size(); ++i)
 {
 if (edges[i].index1() != cur_node)
 {
 neighbors[cur_node] = std::make_pair(start_idx, i);
 start_idx = i;
 cur_node = edges[i].index1();
 }
 }
 if (neighbors.size() != 0)
 neighbors[cur_node] = std::make_pair(start_idx, (unsigned long)edges.size());
 }
// ----------------------------------------------------------------------------------------
 template <
 typename alloc1, 
 typename alloc2
 >
 void convert_unordered_to_ordered (
 const std::vector<sample_pair,alloc1>& edges,
 std::vector<ordered_sample_pair,alloc2>& out_edges
 )
 {
 out_edges.clear();
 out_edges.reserve(edges.size()*2);
 for (unsigned long i = 0; i < edges.size(); ++i)
 {
 out_edges.push_back(ordered_sample_pair(edges[i].index1(), edges[i].index2(), edges[i].distance()));
 if (edges[i].index1() != edges[i].index2())
 out_edges.push_back(ordered_sample_pair(edges[i].index2(), edges[i].index1(), edges[i].distance()));
 }
 }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_EDGE_LIST_GrAPHS_Hh_

AltStyle によって変換されたページ (->オリジナル) /