dlib C++ Library - cpu_dlib.cpp

// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CPU_cPP_
#define DLIB_DNN_CPU_cPP_
// This file contains CPU implementations of the GPU based functions in cuda_dlib.h
#include "cpu_dlib.h"
#include "tensor_tools.h"
#include "../image_transforms/interpolation.h"
#include "../threads.h"
namespace dlib
{
 namespace cpu 
 {
 // -----------------------------------------------------------------------------------
 void multiply (
 bool add_to,
 tensor& dest,
 const tensor& src1,
 const tensor& src2
 )
 {
 DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() &&
 dest.nr() == src1.nr() && src1.nr() == src2.nr() &&
 dest.nc() == src1.nc() && src1.nc() == src2.nc() );
 const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples());
 DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) &&
 (src1.num_samples()==1 || src1.num_samples()==MD) &&
 (src2.num_samples()==1 || src2.num_samples()==MD) );
 if (dest.size() == 0)
 return;
 const size_t max_size = std::max(std::max(dest.size(),src1.size()),src2.size());
 const auto d = dest.host();
 const auto s1 = src1.host();
 const auto s2 = src2.host();
 if (dest.size() == src1.size() && src1.size() == src2.size())
 {
 if (add_to)
 {
 for (size_t i = 0; i < src1.size(); ++i)
 d[i] += s1[i]*s2[i];
 }
 else
 {
 for (size_t i = 0; i < src1.size(); ++i)
 d[i] = s1[i]*s2[i];
 }
 }
 else if (dest.num_samples() == 1)
 {
 if (!add_to)
 {
 for (size_t i = 0; i < dest.size(); ++i)
 d[i] = 0;
 }
 for (size_t i = 0; i < max_size; ++i)
 d[i%dest.size()] += s1[i%src1.size()]*s2[i%src2.size()];
 }
 else
 {
 if (add_to)
 {
 for (size_t i = 0; i < max_size; ++i)
 d[i] += s1[i%src1.size()]*s2[i%src2.size()];
 }
 else
 {
 for (size_t i = 0; i < max_size; ++i)
 d[i] = s1[i%src1.size()]*s2[i%src2.size()];
 }
 }
 }
 // ------------------------------------------------------------------------------------
 void multiply_conv (
 bool add_to,
 tensor& dest,
 const tensor& src1,
 const tensor& src2
 )
 {
 auto d = dest.host();
 auto s1 = src1.host();
 auto s2 = src2.host();
 if (have_same_dimensions(dest,src1))
 {
 DLIB_CASSERT(src2.num_samples() == 1 && src2.nr() == 1 && src2.nc() == 1 && src2.k() == src1.k());
 if (add_to)
 {
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 *d++ += (*s1++)*s2[k];
 }
 }
 }
 }
 }
 else
 {
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 *d++ = (*s1++)*s2[k];
 }
 }
 }
 }
 }
 }
 else
 {
 DLIB_CASSERT(have_same_dimensions(src1,src2));
 DLIB_CASSERT(dest.num_samples() == 1 && dest.nr() == 1 && dest.nc() == 1 && dest.k() == src1.k());
 if (!add_to)
 {
 for (long k = 0; k < src1.k(); ++k)
 d[k] = 0;
 }
 for (long n = 0; n < src1.num_samples(); ++n)
 {
 for (long k = 0; k < src1.k(); ++k)
 {
 for (long r = 0; r < src1.nr(); ++r)
 {
 for (long c = 0; c < src1.nc(); ++c)
 {
 d[k] += (*s1++)*(*s2++);
 }
 }
 }
 }
 }
 }
 // ------------------------------------------------------------------------------------
 void scale_channels (
 bool add_to,
 tensor& dest,
 const tensor& src,
 const tensor& scales
 )
 {
 DLIB_CASSERT(have_same_dimensions(dest,src) && 
 scales.num_samples() == src.num_samples() &&
 scales.k() == src.k() &&
 scales.nr() == 1 &&
 scales.nc() == 1 );
 if (dest.size() == 0)
 return;
 if (add_to)
 {
 auto d = dest.host();
 auto s = src.host();
 auto scal = scales.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 const auto scale = scal[n*scales.k() + k];
 for (long r = 0; r < src.nr(); ++r)
 {
 for (long c = 0; c < src.nc(); ++c)
 {
 *d++ += (*s++) * scale;
 }
 }
 }
 }
 }
 else
 {
 auto d = dest.host_write_only();
 auto s = src.host();
 auto scal = scales.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 const auto scale = scal[n*scales.k() + k];
 for (long r = 0; r < src.nr(); ++r)
 {
 for (long c = 0; c < src.nc(); ++c)
 {
 *d++ = (*s++) * scale;
 }
 }
 }
 }
 }
 }
 // ------------------------------------------------------------------------------------
 void add(
 float beta,
 tensor& dest,
 float alpha,
 const tensor& src
 )
 {
 DLIB_CASSERT(
 (have_same_dimensions(src, dest) ||
 (src.num_samples()==1 && src.k()==dest.k() && src.nr()==1 && src.nc()==1) ||
 (src.num_samples()==1 && src.k()==dest.k() && src.nr()==dest.nr() && src.nc()==dest.nc()) ||
 (src.num_samples()==1 && src.k()==1 && src.nr()==dest.nr() && src.nc()==dest.nc()) ||
 (src.num_samples()==dest.num_samples() && src.k()==1 && src.nr()==1 && src.nc()==1)) &&
 is_same_object(src,dest) == false , 
 "\n\t dest.num_samples(): " << dest.num_samples()
 <<"\n\t dest.k(): " << dest.k()
 <<"\n\t dest.nr(): " << dest.nr()
 <<"\n\t dest.nc(): " << dest.nc()
 <<"\n\t src.num_samples(): " << src.num_samples()
 <<"\n\t src.k(): " << src.k()
 <<"\n\t src.nr(): " << src.nr()
 <<"\n\t src.nc(): " << src.nc()
 );
 if (beta == 0 && alpha == 0)
 {
 dest = 0;
 return;
 }
 auto d = dest.host();
 auto s = src.host();
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 const auto sn = src.num_samples()==1 ? 0:n;
 for (long k = 0; k < dest.k(); ++k)
 {
 const auto sk = src.k()==1 ? 0:k;
 for (long r = 0; r < dest.nr(); ++r)
 {
 const auto sr = src.nr()==1 ? 0:r;
 for (long c = 0; c < dest.nc(); ++c)
 {
 const auto sc = src.nc()==1 ? 0:c;
 const auto s_idx = ((sn*src.k() + sk)*src.nr() + sr)*src.nc() + sc;
 *d = beta*(*d) + alpha*s[s_idx];
 ++d;
 }
 }
 }
 }
 }
 // ----------------------------------------------------------------------------------------
 void add (
 tensor& dest,
 const tensor& src1,
 const tensor& src2
 )
 {
 auto d = dest.host();
 auto s1 = src1.host();
 auto s2 = src2.host();
 // Do the simple and fast version if everything has the same dimensions
 if (have_same_dimensions(dest, src1) &&
 have_same_dimensions(dest, src2))
 {
 for (size_t i = 0; i < dest.size(); ++i)
 d[i] = s1[i] + s2[i];
 return;
 }
 // Otherwise, do the more complex version with bounds checking.
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 float v1 = 0;
 float v2 = 0;
 // if this index is inside src1
 if (n < src1.num_samples() && 
 k < src1.k() && 
 r < src1.nr() && 
 c < src1.nc() )
 {
 const auto s_idx = ((n*src1.k() + k)*src1.nr() + r)*src1.nc() + c;
 v1 = s1[s_idx];
 }
 // if this index is inside src2
 if (n < src2.num_samples() && 
 k < src2.k() && 
 r < src2.nr() && 
 c < src2.nc() )
 {
 const auto s_idx = ((n*src2.k() + k)*src2.nr() + r)*src2.nc() + c;
 v2 = s2[s_idx];
 }
 *d = v1 + v2;
 ++d;
 }
 }
 }
 }
 }
 // ----------------------------------------------------------------------------------------
 void multiply_zero_padded (
 bool add_to,
 tensor& dest,
 const tensor& src1,
 const tensor& src2
 )
 {
 auto d = dest.host();
 auto s1 = src1.host();
 auto s2 = src2.host();
 // Do the simple and fast version if everything has the same dimensions
 if (have_same_dimensions(dest, src1) &&
 have_same_dimensions(dest, src2))
 {
 if (add_to)
 {
 for (size_t i = 0; i < dest.size(); ++i)
 d[i] += s1[i] * s2[i];
 }
 else
 {
 for (size_t i = 0; i < dest.size(); ++i)
 d[i] = s1[i] * s2[i];
 }
 return;
 }
 // Otherwise, do the more complex version with bounds checking.
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 float v1 = 0;
 float v2 = 0;
 // if this index is inside src1
 if (n < src1.num_samples() && 
 k < src1.k() && 
 r < src1.nr() && 
 c < src1.nc() )
 {
 const auto s_idx = ((n*src1.k() + k)*src1.nr() + r)*src1.nc() + c;
 v1 = s1[s_idx];
 }
 // if this index is inside src2
 if (n < src2.num_samples() && 
 k < src2.k() && 
 r < src2.nr() && 
 c < src2.nc() )
 {
 const auto s_idx = ((n*src2.k() + k)*src2.nr() + r)*src2.nc() + c;
 v2 = s2[s_idx];
 }
 if (add_to)
 *d += v1 * v2;
 else
 *d = v1 * v2;
 ++d;
 }
 }
 }
 }
 }
 // ----------------------------------------------------------------------------------------
 void assign_bias_gradient (
 tensor& grad,
 const tensor& gradient_input
 )
 {
 DLIB_CASSERT(
 grad.num_samples() == 1 &&
 gradient_input.k() == grad.k() &&
 gradient_input.nr() == grad.nr() &&
 gradient_input.nc() == grad.nc() &&
 gradient_input.size() > 0);
 auto out = grad.host();
 auto in = gradient_input.host();
 for (size_t i = 0; i < grad.size(); ++i)
 out[i] = *in++;
 for (long j = 1; j < gradient_input.num_samples(); ++j)
 {
 for (size_t i = 0; i < grad.size(); ++i)
 out[i] += *in++;
 }
 }
 // ------------------------------------------------------------------------------------
 void assign_conv_bias_gradient (
 tensor& grad,
 const tensor& gradient_input
 )
 {
 DLIB_CASSERT(
 grad.num_samples() == 1 &&
 grad.k() >= 1 &&
 grad.nr() == 1 &&
 grad.nc() == 1 &&
 gradient_input.k() == grad.k() &&
 gradient_input.size() > 0 && 
 is_same_object(grad,gradient_input) == false
 );
 auto g = grad.host();
 auto gi = gradient_input.host();
 for (long k = 0; k < gradient_input.k(); ++k)
 g[k] = 0;
 for (long n = 0; n < gradient_input.num_samples(); ++n)
 {
 for (long k = 0; k < gradient_input.k(); ++k)
 {
 for (long r = 0; r < gradient_input.nr(); ++r)
 {
 for (long c = 0; c < gradient_input.nc(); ++c)
 {
 g[k] += (*gi++);
 }
 }
 }
 }
 }
 // -----------------------------------------------------------------------------------
 void affine_transform(
 tensor& dest,
 const tensor& src,
 const float A,
 const float B
 )
 {
 DLIB_CASSERT(dest.size()==src.size());
 const auto d = dest.host();
 const auto s = src.host();
 for (size_t i = 0; i < src.size(); ++i)
 d[i] = A*s[i] + B;
 }
 void affine_transform(
 tensor& dest,
 const tensor& src1,
 const tensor& src2,
 const float A,
 const float B,
 const float C
 )
 {
 DLIB_CASSERT(dest.size()==src1.size());
 DLIB_CASSERT(dest.size()==src2.size());
 const auto d = dest.host();
 const auto s1 = src1.host();
 const auto s2 = src2.host();
 for (size_t i = 0; i < src1.size(); ++i)
 d[i] = A*s1[i] + B*s2[i] + C;
 }
 void affine_transform(
 tensor& dest,
 const tensor& src1,
 const tensor& src2,
 const tensor& src3,
 const float A,
 const float B,
 const float C,
 const float D
 )
 {
 DLIB_CASSERT(dest.size()==src1.size());
 DLIB_CASSERT(dest.size()==src2.size());
 DLIB_CASSERT(dest.size()==src3.size());
 const auto d = dest.host();
 const auto s1 = src1.host();
 const auto s2 = src2.host();
 const auto s3 = src3.host();
 for (size_t i = 0; i < src1.size(); ++i)
 d[i] = A*s1[i] + B*s2[i] + C*s3[i] + D;
 }
 void affine_transform_range(
 size_t begin,
 size_t end,
 tensor& dest,
 const tensor& src1,
 const tensor& src2,
 const tensor& src3,
 const float A,
 const float B,
 const float C
 )
 {
 DLIB_CASSERT(dest.size()==src1.size());
 DLIB_CASSERT(dest.size()==src2.size());
 DLIB_CASSERT(dest.size()==src3.size());
 DLIB_CASSERT(begin <= end && end <= dest.size());
 const auto d = dest.host();
 const auto s1 = src1.host();
 const auto s2 = src2.host();
 const auto s3 = src3.host();
 for (size_t i = begin; i < end; ++i)
 d[i] = A*s1[i] + B*s2[i] + C*s3[i];
 }
 // -----------------------------------------------------------------------------------
 void affine_transform(
 tensor& dest,
 const tensor& src,
 const tensor& A,
 const tensor& B
 )
 {
 DLIB_CASSERT(have_same_dimensions(dest,src));
 DLIB_CASSERT(
 ((A.num_samples()==1 && B.num_samples()==1) ||
 (A.num_samples()==src.num_samples() && B.num_samples()==src.num_samples())) &&
 A.nr()==B.nr() && B.nr()==src.nr() &&
 A.nc()==B.nc() && B.nc()==src.nc() &&
 A.k() ==B.k() && B.k()==src.k());
 auto d = dest.host();
 auto s = src.host();
 const auto a = A.host();
 const auto b = B.host();
 if (A.num_samples() == 1)
 {
 const long num = src.size()/src.num_samples();
 for (long i = 0; i < src.num_samples(); ++i)
 {
 for (long j = 0; j < num; ++j)
 {
 *d = a[j]*(*s) + b[j];
 d++;
 s++;
 }
 }
 }
 else
 {
 for (size_t i = 0; i < src.size(); ++i)
 d[i] = a[i]*s[i] + b[i];
 }
 }
 // -----------------------------------------------------------------------------------
 void affine_transform_conv(
 tensor& dest,
 const tensor& src,
 const tensor& A,
 const tensor& B
 )
 {
 DLIB_CASSERT(have_same_dimensions(dest,src));
 DLIB_CASSERT(have_same_dimensions(A,B));
 DLIB_CASSERT(A.num_samples() == 1 &&
 A.nr() == 1 &&
 A.nc() == 1 &&
 A.k() == src.k());
 auto d = dest.host();
 auto s = src.host();
 const auto a = A.host();
 const auto b = B.host();
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 *d++ = a[k]*(*s++) + b[k];
 }
 }
 }
 }
 }
 // ----------------------------------------------------------------------------------------
 void affine_transform(
 const rectangle& rect,
 tensor& dest, 
 const tensor& src1, 
 const tensor& src2, 
 const tensor& src3, 
 float A, 
 float B,
 float C
 )
 {
 DLIB_CASSERT(dest.size() == src1.size());
 DLIB_CASSERT(dest.size() == src2.size());
 DLIB_CASSERT(dest.size() == src3.size());
 DLIB_CASSERT(dest.num_samples() == src1.num_samples());
 DLIB_CASSERT(dest.num_samples() == src2.num_samples());
 DLIB_CASSERT(dest.num_samples() == src3.num_samples());
 DLIB_CASSERT(rectangle(0,0, dest.size()/dest.num_samples()-1, dest.num_samples()-1).contains(rect));
 auto d = dest.host();
 auto s1 = src1.host();
 auto s2 = src2.host();
 auto s3 = src3.host();
 const auto nc = dest.size()/dest.num_samples();
 for (long r = rect.top(); r <= rect.bottom(); ++r)
 {
 for (long c = rect.left(); c <= rect.right(); ++c)
 {
 auto idx = r*nc + c;
 d[idx] = s1[idx]*A + s2[idx]*B + s3[idx]*C;
 }
 }
 }
 // -----------------------------------------------------------------------------------
 void compute_adam_update (
 size_t begin,
 size_t end,
 tensor& s,
 tensor& m,
 tensor& v,
 const float t,
 const float learning_rate,
 const float weight_decay,
 const float momentum1,
 const float momentum2,
 const tensor& params,
 const tensor& params_grad
 )
 {
 DLIB_CASSERT(s.size() == m.size() &&
 s.size() == v.size() &&
 s.size() == params.size() &&
 s.size() == params_grad.size());
 DLIB_CASSERT(begin <= end && end <= params.size());
 const float eps = 1e-8;
 const float alpha = learning_rate*std::sqrt(1-std::pow(momentum2,t))/(1-std::pow(momentum1, t));
 // The loop is equivalent to doing this:
 // m = momentum1*m + (1-momentum1) * (weight_decay*params + params_grad);
 // v = momentum2*v + (1-momentum2)*squared(weight_decay*params + params_grad);
 // s = -alpha*m/(sqrt(v) + eps);
 auto pm = m.host();
 auto pv = v.host();
 auto ps = s.host_write_only();
 auto pparams = params.host();
 auto ppgrad = params_grad.host();
 for (size_t i = begin; i < end; ++i)
 {
 float g = weight_decay*pparams[i] + ppgrad[i];
 pm[i] = momentum1*pm[i] + (1-momentum1)*g;
 pv[i] = momentum2*pv[i] + (1-momentum2)*g*g;
 ps[i] = -alpha*pm[i]/(std::sqrt(pv[i]) + eps);
 }
 }
 // -----------------------------------------------------------------------------------
 void batch_normalize_inference (
 const double eps,
 resizable_tensor& dest,
 const tensor& src,
 const tensor& gamma, 
 const tensor& beta,
 const tensor& running_means,
 const tensor& running_variances
 )
 {
 DLIB_CASSERT(
 gamma.num_samples() == 1 && 
 gamma.nr() == src.nr() &&
 gamma.nc() == src.nc() &&
 gamma.k() == src.k() &&
 have_same_dimensions(gamma, beta) &&
 have_same_dimensions(gamma, running_means) &&
 have_same_dimensions(gamma, running_variances) && 
 eps > 0, 
 "\ngamma.num_samples(): " << gamma.num_samples() << 
 "\ngamma.k(): " << gamma.k() << 
 "\ngamma.nr(): " << gamma.nr() << 
 "\ngamma.nc(): " << gamma.nc() << 
 "\nbeta.num_samples(): " << beta.num_samples() << 
 "\nbeta.k(): " << beta.k() << 
 "\nbeta.nr(): " << beta.nr() << 
 "\nbeta.nc(): " << beta.nc() << 
 "\nrunning_means.num_samples(): " << running_means.num_samples() << 
 "\nrunning_means.k(): " << running_means.k() << 
 "\nrunning_means.nr(): " << running_means.nr() << 
 "\nrunning_means.nc(): " << running_means.nc() << 
 "\nrunning_variances.num_samples(): " << running_variances.num_samples() << 
 "\nrunning_variances.k(): " << running_variances.k() << 
 "\nrunning_variances.nr(): " << running_variances.nr() << 
 "\nrunning_variances.nc(): " << running_variances.nc() << 
 "\nsrc.k(): " << src.k() << 
 "\nsrc.nr(): " << src.nr() << 
 "\nsrc.nc(): " << src.nc() <<
 "\neps: " << eps 
 );
 dest.copy_size(src);
 auto d = dest.host();
 auto s = src.host();
 auto g = gamma.host();
 auto b = beta.host();
 auto m = running_means.host();
 auto v = running_variances.host();
 const long num = src.k()*src.nr()*src.nc();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < num; ++k)
 {
 *d = g[k]*(*s - m[k])/std::sqrt(v[k]+eps) + b[k];
 ++d;
 ++s;
 }
 }
 }
 void batch_normalize (
 const double eps,
 resizable_tensor& dest,
 resizable_tensor& means,
 resizable_tensor& invstds,
 const double averaging_factor,
 resizable_tensor& running_means,
 resizable_tensor& running_variances,
 const tensor& src,
 const tensor& gamma, 
 const tensor& beta 
 )
 {
 DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
 DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means));
 DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds));
 DLIB_CASSERT(
 src.num_samples() > 1 &&
 gamma.num_samples() == 1 && 
 beta.num_samples() == 1 && 
 gamma.nr() == beta.nr() && beta.nr() == src.nr() &&
 gamma.nc() == beta.nc() && beta.nc() == src.nc() &&
 gamma.k() == beta.k() && beta.k() == src.k() &&
 eps > 0, 
 "\ngamma.num_samples(): " << gamma.num_samples() << 
 "\ngamma.k(): " << gamma.k() << 
 "\ngamma.nr(): " << gamma.nr() << 
 "\ngamma.nc(): " << gamma.nc() << 
 "\nbeta.num_samples(): " << beta.num_samples() << 
 "\nbeta.k(): " << beta.k() << 
 "\nbeta.nr(): " << beta.nr() << 
 "\nbeta.nc(): " << beta.nc() << 
 "\nsrc.k(): " << src.k() << 
 "\nsrc.nr(): " << src.nr() << 
 "\nsrc.nc(): " << src.nc() <<
 "\neps: " << eps 
 );
 dest.copy_size(src);
 means.set_size(1, src.k(), src.nr(), src.nc());
 invstds.set_size(1, src.k(), src.nr(), src.nc());
 // first compute means and invstds
 means = 0;
 invstds = 0;
 const auto p_invstds = invstds.host();
 const auto p_means = means.host();
 auto p_src = src.host();
 const long num = src.k()*src.nr()*src.nc();
 // compute means, and sum of squares
 for (long i = 0; i < num; ++i)
 {
 for (long n = 0; n < src.num_samples(); ++n)
 {
 float val = p_src[n*num+i];
 p_means[i] += val;
 p_invstds[i] += val*val;
 }
 }
 means /= src.num_samples();
 invstds /= src.num_samples();
 // copy data back to host
 invstds.host(); means.host();
 // compute variances 
 running_variances.copy_size(invstds);
 auto rvar = running_variances.host();
 // This scale makes the running variances unbiased.
 const double scale = (src.num_samples())/(src.num_samples()-1.0);
 for (long i = 0; i < num; ++i)
 {
 auto actual_var = p_invstds[i] - p_means[i]*p_means[i];
 if (averaging_factor == 1)
 rvar[i] = scale*actual_var;
 else
 rvar[i] = (1-averaging_factor)*rvar[i] + scale*averaging_factor*actual_var;
 p_invstds[i] = 1.0f/std::sqrt(actual_var + eps);
 }
 p_src = src.host();
 auto p_dest = dest.host();
 const auto p_gamma = gamma.host(); 
 const auto p_beta = beta.host(); 
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long i = 0; i < num; ++i)
 {
 *p_dest = (*p_src - p_means[i])*p_invstds[i];
 *p_dest = (*p_dest)*p_gamma[i] + p_beta[i];
 ++p_src;
 ++p_dest;
 }
 }
 // now keep track of the running means 
 running_means.copy_size(means);
 if (averaging_factor != 1)
 running_means = (1-averaging_factor)*mat(running_means) + averaging_factor*mat(means);
 else
 running_means = means;
 }
 void batch_normalize_gradient (
 const double eps,
 const tensor& gradient_input,
 const tensor& means,
 const tensor& invstds,
 const tensor& src,
 const tensor& gamma,
 tensor& src_grad,
 tensor& gamma_grad, 
 tensor& beta_grad 
 )
 {
 const long num = src.k()*src.nr()*src.nc();
 DLIB_CASSERT(src.num_samples() > 1);
 DLIB_CASSERT(num == (long)means.size());
 DLIB_CASSERT(num == (long)invstds.size());
 DLIB_CASSERT(num == (long)gamma.size());
 DLIB_CASSERT(num == (long)gamma_grad.size());
 DLIB_CASSERT(num == (long)beta_grad.size());
 DLIB_CASSERT(have_same_dimensions(gradient_input, src));
 DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad));
 DLIB_CASSERT(eps > 0);
 beta_grad = 0;
 gamma_grad = 0;
 auto p_grad = gradient_input.host();
 auto p_src = src.host();
 const auto p_gamma = gamma.host(); 
 const auto p_gamma_grad = gamma_grad.host(); 
 const auto p_beta_grad = beta_grad.host(); 
 const auto p_invstds = invstds.host();
 const auto p_means = means.host();
 resizable_tensor dvars, dmeans;
 dvars.copy_size(invstds);
 dmeans.copy_size(means);
 dvars = 0;
 dmeans = 0;
 const auto p_dvars = dvars.host();
 const auto p_dmeans = dmeans.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long i = 0; i < num; ++i)
 {
 const float x_hat = (*p_src - p_means[i])*p_invstds[i];
 p_beta_grad[i] += *p_grad;
 p_gamma_grad[i] += (*p_grad)*x_hat;
 const float dx = *p_grad * p_gamma[i];
 p_dvars[i] += dx*(*p_src - p_means[i])*-0.5*std::pow(p_invstds[i], 3.0f);
 ++p_grad;
 ++p_src;
 }
 }
 const float invnum = 1.0f/src.num_samples();
 p_grad = gradient_input.host();
 p_src = src.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long i = 0; i < num; ++i)
 {
 const float dx = *p_grad * p_gamma[i];
 p_dmeans[i] += dx*-p_invstds[i] + p_dvars[i] * -2*(*p_src - p_means[i])*invnum;
 ++p_grad;
 ++p_src;
 }
 }
 p_grad = gradient_input.host();
 p_src = src.host();
 auto p_src_grad = src_grad.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long i = 0; i < num; ++i)
 {
 const float dx = *p_grad * p_gamma[i];
 *p_src_grad += dx*p_invstds[i] + 
 p_dvars[i] *2*(*p_src - p_means[i])*invnum + 
 p_dmeans[i]*invnum;
 ++p_grad;
 ++p_src;
 ++p_src_grad;
 }
 }
 }
 // ----------------------------------------------------------------------------------------
 void batch_normalize_conv_inference (
 const double eps,
 resizable_tensor& dest,
 const tensor& src,
 const tensor& gamma, 
 const tensor& beta,
 const tensor& running_means,
 const tensor& running_variances
 )
 {
 DLIB_CASSERT(
 gamma.num_samples() == 1 && 
 gamma.nr() == 1 &&
 gamma.nc() == 1 &&
 gamma.k() == src.k() &&
 have_same_dimensions(gamma, beta) &&
 have_same_dimensions(gamma, running_means) &&
 have_same_dimensions(gamma, running_variances) &&
 eps > 0, 
 "\ngamma.num_samples(): " << gamma.num_samples() << 
 "\ngamma.k(): " << gamma.k() << 
 "\ngamma.nr(): " << gamma.nr() << 
 "\ngamma.nc(): " << gamma.nc() << 
 "\nbeta.num_samples(): " << beta.num_samples() << 
 "\nbeta.k(): " << beta.k() << 
 "\nbeta.nr(): " << beta.nr() << 
 "\nbeta.nc(): " << beta.nc() << 
 "\nrunning_means.num_samples(): " << running_means.num_samples() << 
 "\nrunning_means.k(): " << running_means.k() << 
 "\nrunning_means.nr(): " << running_means.nr() << 
 "\nrunning_means.nc(): " << running_means.nc() << 
 "\nrunning_variances.num_samples(): " << running_variances.num_samples() << 
 "\nrunning_variances.k(): " << running_variances.k() << 
 "\nrunning_variances.nr(): " << running_variances.nr() << 
 "\nrunning_variances.nc(): " << running_variances.nc() << 
 "\nsrc.k(): " << src.k() << 
 "\nsrc.nr(): " << src.nr() << 
 "\nsrc.nc(): " << src.nc() <<
 "\neps: " << eps 
 );
 dest.copy_size(src);
 auto d = dest.host();
 auto s = src.host();
 auto g = gamma.host();
 auto b = beta.host();
 auto m = running_means.host();
 auto v = running_variances.host();
 const long num = src.nr()*src.nc();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 const float invstd = 1.0f/std::sqrt(v[k] + eps);
 for (long j = 0; j < num; ++j)
 {
 *d = g[k]*(*s - m[k])*invstd + b[k];
 ++d;
 ++s;
 }
 }
 }
 }
 void batch_normalize_conv (
 const double eps,
 resizable_tensor& dest,
 resizable_tensor& means,
 resizable_tensor& invstds,
 const double averaging_factor,
 resizable_tensor& running_means,
 resizable_tensor& running_variances,
 const tensor& src,
 const tensor& gamma, 
 const tensor& beta 
 )
 {
 DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
 DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means));
 DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds));
 DLIB_CASSERT(
 src.num_samples() > 1 &&
 gamma.num_samples() == 1 && 
 beta.num_samples() == 1 && 
 gamma.nr() == 1 && 
 beta.nr() == 1 && 
 gamma.nc() == 1 && 
 beta.nc() == 1 && 
 gamma.k() == beta.k() && beta.k() == src.k() &&
 eps > 0, 
 "\ngamma.num_samples(): " << gamma.num_samples() << 
 "\ngamma.k(): " << gamma.k() << 
 "\ngamma.nr(): " << gamma.nr() << 
 "\ngamma.nc(): " << gamma.nc() << 
 "\nbeta.num_samples(): " << beta.num_samples() << 
 "\nbeta.k(): " << beta.k() << 
 "\nbeta.nr(): " << beta.nr() << 
 "\nbeta.nc(): " << beta.nc() << 
 "\nsrc.k(): " << src.k() << 
 "\nsrc.nr(): " << src.nr() << 
 "\nsrc.nc(): " << src.nc() <<
 "\neps: " << eps 
 );
 dest.copy_size(src);
 means.set_size(1, src.k());
 invstds.set_size(1, src.k());
 // first compute means and invstds
 means = 0;
 invstds = 0;
 const auto p_invstds = invstds.host();
 const auto p_means = means.host();
 const auto p_gamma = gamma.host(); 
 const auto p_beta = beta.host(); 
 auto p_src = src.host();
 const long num = src.nr()*src.nc();
 // compute means, and sum of squares
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 for (long i = 0; i < num; ++i)
 {
 p_means[k] += *p_src;
 p_invstds[k] += (*p_src)*(*p_src);
 ++p_src;
 }
 }
 }
 means /= src.num_samples()*num;
 invstds /= src.num_samples()*num;
 // copy data back to host
 invstds.host(); means.host();
 p_src = src.host();
 // compute variances 
 running_variances.copy_size(invstds);
 auto rvar = running_variances.host();
 // This scale makes the running variances unbiased.
 const double scale = (src.num_samples()*num)/(src.num_samples()*num-1.0);
 for (long k = 0; k < src.k(); ++k)
 {
 float actual_var = p_invstds[k] - p_means[k]*p_means[k];
 if (averaging_factor == 1)
 rvar[k] = scale*actual_var;
 else
 rvar[k] = (1-averaging_factor)*rvar[k] + scale*averaging_factor*actual_var;
 p_invstds[k] = 1.0f/std::sqrt(actual_var + eps);
 }
 p_src = src.host();
 auto p_dest = dest.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 for (long i = 0; i < num; ++i)
 {
 *p_dest = (*p_src - p_means[k])*p_invstds[k];
 *p_dest = (*p_dest)*p_gamma[k] + p_beta[k];
 ++p_src;
 ++p_dest;
 }
 }
 }
 // now keep track of the running means 
 running_means.copy_size(means);
 if (averaging_factor != 1)
 running_means = (1-averaging_factor)*mat(running_means) + averaging_factor*mat(means);
 else
 running_means = means;
 }
 void batch_normalize_conv_gradient(
 const double eps,
 const tensor& gradient_input,
 const tensor& means,
 const tensor& invstds,
 const tensor& src,
 const tensor& gamma,
 tensor& src_grad,
 tensor& gamma_grad, 
 tensor& beta_grad 
 )
 {
 const long num = src.nr()*src.nc();
 DLIB_CASSERT(src.num_samples() > 1);
 DLIB_CASSERT(src.k() == (long)means.size());
 DLIB_CASSERT(src.k() == (long)invstds.size());
 DLIB_CASSERT(src.k() == (long)gamma.size());
 DLIB_CASSERT(src.k() == (long)gamma_grad.size());
 DLIB_CASSERT(src.k() == (long)beta_grad.size());
 DLIB_CASSERT(have_same_dimensions(gradient_input, src));
 DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad));
 DLIB_CASSERT(eps > 0);
 beta_grad = 0;
 gamma_grad = 0;
 auto p_grad = gradient_input.host();
 auto p_src = src.host();
 const auto p_gamma = gamma.host(); 
 const auto p_gamma_grad = gamma_grad.host(); 
 const auto p_beta_grad = beta_grad.host(); 
 const auto p_invstds = invstds.host();
 const auto p_means = means.host();
 resizable_tensor dvars, dmeans;
 dvars.copy_size(invstds);
 dmeans.copy_size(means);
 dvars = 0;
 dmeans = 0;
 const auto p_dvars = dvars.host();
 const auto p_dmeans = dmeans.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 const float invstd_pow = -0.5*std::pow(p_invstds[k], 3.0f);
 for (long i = 0; i < num; ++i)
 {
 const float x_hat = (*p_src - p_means[k])*p_invstds[k];
 p_beta_grad[k] += *p_grad;
 p_gamma_grad[k] += (*p_grad)*x_hat;
 const float dx = *p_grad * p_gamma[k];
 p_dvars[k] += dx*(*p_src - p_means[k])*invstd_pow;
 ++p_grad;
 ++p_src;
 }
 }
 }
 p_grad = gradient_input.host();
 p_src = src.host();
 const float invnum = 1.0f/(src.num_samples()*num);
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 for (long i = 0; i < num; ++i)
 {
 const float dx = *p_grad * p_gamma[k];
 p_dmeans[k] += -dx*p_invstds[k] + p_dvars[k] * -2*(*p_src - p_means[k])*invnum;
 ++p_grad;
 ++p_src;
 }
 }
 }
 p_grad = gradient_input.host();
 p_src = src.host();
 auto p_src_grad = src_grad.host();
 for (long n = 0; n < src.num_samples(); ++n)
 {
 for (long k = 0; k < src.k(); ++k)
 {
 for (long i = 0; i < num; ++i)
 {
 const float dx = *p_grad * p_gamma[k];
 *p_src_grad += dx*p_invstds[k] + 
 p_dvars[k]*2*(*p_src - p_means[k])*invnum + 
 p_dmeans[k]*invnum;
 ++p_grad;
 ++p_src;
 ++p_src_grad;
 }
 }
 }
 }
 // -----------------------------------------------------------------------------------
 void threshold (
 tensor& data,
 float thresh
 )
 {
 const auto d = data.host();
 for (size_t i = 0; i < data.size(); ++i)
 d[i] = d[i]>thresh ? 1:0;
 }
 void dot (
 const tensor& a,
 const tensor& b,
 tensor& result,
 size_t idx
 )
 {
 DLIB_CASSERT(a.size() == b.size());
 DLIB_CASSERT(idx < result.size());
 const auto aa = a.host();
 const auto bb = b.host();
 auto r = result.host();
 for (size_t i = 0; i < a.size(); ++i)
 r[idx] += aa[i]*bb[i];
 }
 // -----------------------------------------------------------------------------------
 // -----------------------------------------------------------------------------------
 // -----------------------------------------------------------------------------------
 namespace ttimpl
 {
 void softmax (
 const long num_locations,
 const long num_channels,
 tensor& dest,
 const tensor& src
 )
 {
 DLIB_ASSERT(num_channels*num_locations == src.nr()*src.nc()*src.k());
 DLIB_CASSERT(have_same_dimensions(dest,src));
 const auto d = dest.host();
 const auto s = src.host();
 // Note that we subtract out the max values in each channel before applying
 // exp() to avoid numeric overflow in the subsequent computations. Doing this
 // doesn't change the resulting output, it just makes it more numerically
 // stable.
 for (long n = 0; n < src.num_samples(); ++n)
 {
 auto ss = s + num_locations*num_channels*n;
 auto dd = d + num_locations*num_channels*n;
 for (long i = 0; i < num_locations; ++i)
 {
 float max_val = -std::numeric_limits<float>::infinity();
 for (long k = 0; k < num_channels; ++k)
 max_val = std::max(max_val, ss[k*num_locations]);
 for (long k = 0; k < num_channels; ++k)
 dd[k*num_locations] = std::exp(ss[k*num_locations]-max_val);
 ++ss;
 ++dd;
 }
 }
 // Now normalize each channel so they sum to 1.
 for (long n = 0; n < src.num_samples(); ++n)
 {
 const auto dd = d + num_locations*num_channels*n;
 for (long i = 0; i < num_locations; ++i)
 {
 const auto ddd = dd+i;
 float temp = 0;
 for (long k = 0; k < num_channels; ++k)
 temp += ddd[k*num_locations];
 for (long k = 0; k < num_channels; ++k)
 ddd[k*num_locations] /= temp;
 }
 }
 }
 void softmax_gradient (
 const long num_locations,
 const long num_channels,
 tensor& grad,
 const tensor& dest,
 const tensor& gradient_input
 )
 {
 DLIB_ASSERT(num_channels*num_locations == grad.nr()*grad.nc()*grad.k());
 DLIB_CASSERT(have_same_dimensions(grad,dest));
 DLIB_CASSERT(have_same_dimensions(grad,gradient_input));
 const auto d = dest.host();
 const auto g = grad.host();
 const auto in = gradient_input.host();
 for (long n = 0; n < grad.num_samples(); ++n)
 {
 const auto d2 = d + num_locations*num_channels*n;
 const auto g2 = g + num_locations*num_channels*n;
 const auto in2 = in + num_locations*num_channels*n;
 for (long i = 0; i < num_locations; ++i)
 {
 const auto d3 = d2+i;
 const auto g3 = g2+i;
 const auto in3 = in2+i;
 float temp = 0;
 for (long k = 0; k < num_channels; ++k)
 temp += -d3[k*num_locations]*in3[k*num_locations];
 if (is_same_object(gradient_input, grad))
 {
 for (long k = 0; k < num_channels; ++k)
 g3[k*num_locations] = d3[k*num_locations]*(temp+in3[k*num_locations]);
 }
 else
 {
 for (long k = 0; k < num_channels; ++k)
 g3[k*num_locations] += d3[k*num_locations]*(temp+in3[k*num_locations]);
 }
 }
 }
 }
 }
 // ----------------------------------------------------------------------------------------
 void softmax (
 tensor& dest,
 const tensor& src
 )
 {
 DLIB_CASSERT(have_same_dimensions(dest,src));
 ttimpl::softmax(src.nr()*src.nc(), src.k(), dest, src);
 }
 void softmax_gradient (
 tensor& grad,
 const tensor& dest,
 const tensor& gradient_input
 )
 {
 DLIB_CASSERT(have_same_dimensions(grad,dest));
 DLIB_CASSERT(have_same_dimensions(grad,gradient_input));
 ttimpl::softmax_gradient(grad.nr()*grad.nc(), grad.k(), grad, dest, gradient_input);
 }
 // ------------------------------------------------------------------------------------
 void softmax_all (
 tensor& dest,
 const tensor& src
 )
 {
 DLIB_CASSERT(have_same_dimensions(dest,src));
 ttimpl::softmax(1, src.nr()*src.nc()*src.k(), dest, src);
 }
 void softmax_all_gradient (
 tensor& grad,
 const tensor& dest,
 const tensor& gradient_input
 )
 {
 DLIB_CASSERT(have_same_dimensions(grad,dest));
 DLIB_CASSERT(have_same_dimensions(grad,gradient_input));
 ttimpl::softmax_gradient(1, grad.nr()*grad.nc()*grad.k(), grad, dest, gradient_input);
 }
 // ------------------------------------------------------------------------------------
 void sigmoid (
 tensor& dest,
 const tensor& src
 )
 {
 const auto d = dest.host();
 const auto s = src.host();
 for (size_t i = 0; i < src.size(); ++i)
 d[i] = 1/(1+std::exp(-s[i]));
 }
 void sigmoid_gradient (
 tensor& grad,
 const tensor& dest,
 const tensor& gradient_input
 )
 {
 const auto g = grad.host();
 const auto d = dest.host();
 const auto in = gradient_input.host();
 if (is_same_object(gradient_input, grad))
 {
 for (size_t i = 0; i < dest.size(); ++i)
 g[i] = in[i]*d[i]*(1-d[i]);
 }
 else
 {
 for (size_t i = 0; i < dest.size(); ++i)
 g[i] += in[i]*d[i]*(1-d[i]);
 }
 }
 // ------------------------------------------------------------------------------------
 void relu (
 tensor& dest,
 const tensor& src
 )
 {
 dest = lowerbound(mat(src), 0);
 }
 void relu_gradient (
 tensor& grad,
 const tensor& dest,
 const tensor& gradient_input
 )
 {
 const float* gi = gradient_input.host();
 const float* in = dest.host();
 float* out = grad.host();
 if (is_same_object(grad, gradient_input))
 {
 for (size_t i = 0; i < dest.size(); ++i)
 {
 if (in[i] > 0)
 out[i] = gi[i];
 else
 out[i] = 0;
 }
 }
 else
 {
 for (size_t i = 0; i < dest.size(); ++i)
 {
 if (in[i] > 0)
 out[i] += gi[i];
 }
 }
 }
 // ----------------------------------------------------------------------------------------
 void prelu (
 tensor& dest,
 const tensor& src,
 const tensor& param
 )
 {
 const float p = param.host()[0];
 const float* s = src.host();
 float* d = dest.host();
 for (size_t i = 0; i < dest.size(); ++i)
 {
 if (s[i] > 0)
 d[i] = s[i];
 else
 d[i] = p*s[i];
 }
 }
 void prelu_gradient (
 tensor& grad,
 const tensor& src,
 const tensor& gradient_input,
 const tensor& param,
 tensor& params_grad 
 )
 {
 DLIB_CASSERT(is_same_object(grad, gradient_input) == false);
 const float p = param.host()[0];
 const float* gi = gradient_input.host();
 const float* s = src.host();
 float* out = grad.host();
 float pgrad = 0;
 for (size_t i = 0; i < src.size(); ++i)
 {
 if (s[i] > 0)
 {
 out[i] += gi[i];
 }
 else
 {
 out[i] += p*gi[i];
 pgrad += gi[i]*s[i];
 }
 }
 params_grad.host()[0] = pgrad;
 }
 // ------------------------------------------------------------------------------------
 void tanh (
 tensor& dest,
 const tensor& src
 )
 {
 const auto d = dest.host();
 const auto s = src.host();
 for (size_t i = 0; i < src.size(); ++i)
 d[i] = std::tanh(s[i]);
 }
 void tanh_gradient (
 tensor& grad,
 const tensor& dest,
 const tensor& gradient_input
 )
 {
 const auto g = grad.host();
 const auto d = dest.host();
 const auto in = gradient_input.host();
 if (is_same_object(grad, gradient_input))
 {
 for (size_t i = 0; i < dest.size(); ++i)
 g[i] = in[i]*(1-d[i]*d[i]);
 }
 else
 {
 for (size_t i = 0; i < dest.size(); ++i)
 g[i] += in[i]*(1-d[i]*d[i]);
 }
 }
 // ----------------------------------------------------------------------------------------
 void resize_bilinear (
 tensor& dest,
 long dest_row_stride,
 long dest_channel_stride,
 const tensor& src,
 long src_row_stride,
 long src_channel_stride
 )
 {
 DLIB_CASSERT(is_same_object(dest, src)==false);
 DLIB_CASSERT(dest.num_samples() == src.num_samples());
 DLIB_CASSERT(dest.k() == src.k());
 if (dest.size() == 0 || src.size() == 0)
 return;
 const float* s = src.host();
 float* d = dest.host();
 parallel_for(0, dest.k()*dest.num_samples(), [&](long i)
 {
 auto simg = sub_image(s+i*src_channel_stride, src.nr(), src.nc(), src_row_stride);
 auto dimg = sub_image(d+i*dest_channel_stride, dest.nr(), dest.nc(), dest_row_stride);
 resize_image(simg, dimg);
 });
 }
 void resize_bilinear_gradient (
 tensor& grad,
 long grad_row_stride,
 long grad_channel_stride,
 const tensor& gradient_input,
 long gradient_input_row_stride,
 long gradient_input_channel_stride
 )
 {
 DLIB_CASSERT(is_same_object(grad, gradient_input)==false);
 DLIB_CASSERT(gradient_input.num_samples() == grad.num_samples());
 DLIB_CASSERT(gradient_input.k() == grad.k());
 if (gradient_input.size() == 0 || grad.size() == 0)
 return;
 const float* gi = gradient_input.host();
 float* g = grad.host();
 const float x_scale = (grad.nc()-1)/(float)std::max<long>((gradient_input.nc()-1),1);
 const float y_scale = (grad.nr()-1)/(float)std::max<long>((gradient_input.nr()-1),1);
 for (long long samp = 0; samp < gradient_input.num_samples(); ++samp)
 {
 for (long long k = 0; k < gradient_input.k(); ++k)
 {
 for (long long r = 0; r < gradient_input.nr(); ++r)
 {
 const float y = r*y_scale;
 const long long top = static_cast<long long>(std::floor(y));
 const long long bottom = std::min(top+1, grad.nr()-1);
 const float tb_frac = y - top;
 for (long long c = 0; c < gradient_input.nc(); ++c)
 {
 const float x = c*x_scale;
 const long long left = static_cast<long long>(std::floor(x));
 const long long right = std::min(left+1, grad.nc()-1);
 const float lr_frac = x - left;
 const float tmp = gi[r*gradient_input_row_stride+c];
 g[top*grad_row_stride+left] += tmp*(1-tb_frac)*(1-lr_frac);
 g[top*grad_row_stride+right] += tmp*(1-tb_frac)*(lr_frac);
 g[bottom*grad_row_stride+left] += tmp*(tb_frac)*(1-lr_frac);
 g[bottom*grad_row_stride+right] += tmp*(tb_frac)*(lr_frac);
 }
 }
 g += grad_channel_stride;
 gi += gradient_input_channel_stride;
 }
 }
 }
 // ------------------------------------------------------------------------------------
 // ------------------------------------------------------------------------------------
 // ------------------------------------------------------------------------------------
 pooling::pooling (
 ) : window_height(0),window_width(0),stride_y(0),stride_x(0),padding_y(0),padding_x(0),do_max_pooling(true)
 {
 }
 void pooling::
 clear(
 )
 {
 window_height = 0;
 window_width = 0;
 stride_y = 0;
 stride_x = 0;
 padding_y = 0;
 padding_x = 0;
 }
 void pooling::
 setup_max_pooling(
 int window_height_,
 int window_width_,
 int stride_y_,
 int stride_x_,
 int padding_y_,
 int padding_x_
 )
 {
 DLIB_CASSERT(window_width_ > 0);
 DLIB_CASSERT(window_height_ > 0);
 DLIB_CASSERT(stride_y_ > 0);
 DLIB_CASSERT(stride_x_ > 0);
 DLIB_CASSERT(0 <= padding_y_ && padding_y_ < window_height_);
 DLIB_CASSERT(0 <= padding_x_ && padding_x_ < window_width_);
 window_height = window_height_;
 window_width = window_width_;
 stride_y = stride_y_;
 stride_x = stride_x_;
 padding_y = padding_y_;
 padding_x = padding_x_;
 do_max_pooling = true;
 }
 void pooling::
 setup_avg_pooling(
 int window_height_,
 int window_width_,
 int stride_y_,
 int stride_x_,
 int padding_y_,
 int padding_x_
 )
 {
 DLIB_CASSERT(window_width_ > 0);
 DLIB_CASSERT(window_height_ > 0);
 DLIB_CASSERT(stride_y_ > 0);
 DLIB_CASSERT(stride_x_ > 0);
 DLIB_CASSERT(0 <= padding_y_ && padding_y_ < window_height_);
 DLIB_CASSERT(0 <= padding_x_ && padding_x_ < window_width_);
 window_height = window_height_;
 window_width = window_width_;
 stride_y = stride_y_;
 stride_x = stride_x_;
 padding_y = padding_y_;
 padding_x = padding_x_;
 do_max_pooling = false;
 }
 void pooling::
 operator() (
 resizable_tensor& dest,
 const tensor& src
 )
 {
 DLIB_CASSERT(window_width > 0);
 DLIB_CASSERT(window_height > 0);
 DLIB_CASSERT(stride_y > 0);
 DLIB_CASSERT(stride_x > 0);
 DLIB_CASSERT(0 <= padding_y && padding_y < window_height);
 DLIB_CASSERT(0 <= padding_x && padding_x < window_width);
 DLIB_CASSERT(window_width <= src.nc() + 2*padding_x,
 "Pooling windows must be small enough to fit into the padded image.");
 DLIB_CASSERT(window_height <= src.nr() + 2*padding_y,
 "Pooling windows must be small enough to fit into the padded image.");
 dest.set_size(
 src.num_samples(),
 src.k(),
 1+(src.nr()+2*padding_y-window_height)/stride_y,
 1+(src.nc()+2*padding_x-window_width)/stride_x
 );
 if (src.size() == 0)
 {
 dest = 0;
 return;
 }
 auto d = dest.host();
 const long x_offset = window_width/2 - padding_x;
 const long y_offset = window_height/2 - padding_y;
 if (does_max_pooling())
 {
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 auto simg = image_plane(src,n,k);
 auto dimg = d + (n*dest.k() + k)*dest.nr()*dest.nc();
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 auto win = centered_rect(c*stride_x+x_offset,
 r*stride_y+y_offset,
 window_width,
 window_height);
 dimg[r*dest.nc() + c] = max(subm_clipped(simg,win));
 }
 }
 }
 }
 }
 else
 {
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 auto simg = image_plane(src,n,k);
 auto dimg = d + (n*dest.k() + k)*dest.nr()*dest.nc();
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 auto win = centered_rect(c*stride_x+x_offset,
 r*stride_y+y_offset,
 window_width,
 window_height);
 dimg[r*dest.nc() + c] = mean(subm_clipped(simg,win));
 }
 }
 }
 }
 }
 }
 void pooling::get_gradient(
 const tensor& gradient_input, 
 const tensor& dest,
 const tensor& src,
 tensor& grad 
 )
 {
 DLIB_CASSERT(have_same_dimensions(gradient_input,dest));
 DLIB_CASSERT(have_same_dimensions(src,grad));
 if (src.size() == 0)
 {
 return;
 }
 auto gi = gradient_input.host();
 auto g = grad.host();
 const long x_offset = window_width/2 - padding_x;
 const long y_offset = window_height/2 - padding_y;
 if (does_max_pooling())
 {
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 auto simg = image_plane(src,n,k);
 auto gimg = g + (n*grad.k() + k)*grad.nr()*grad.nc();
 auto giimg = gi + (n*dest.k() + k)*dest.nr()*dest.nc();
 auto imgbox = get_rect(simg);
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 auto win = centered_rect(c*stride_x+x_offset,
 r*stride_y+y_offset,
 window_width,
 window_height).intersect(imgbox);
 auto p = max_point(subm(simg,win))+win.tl_corner();
 gimg[p.y()*grad.nc()+p.x()] += giimg[r*dest.nc()+c];
 }
 }
 }
 }
 }
 else
 {
 for (long n = 0; n < dest.num_samples(); ++n)
 {
 for (long k = 0; k < dest.k(); ++k)
 {
 auto simg = image_plane(src,n,k);
 auto gimg = g + (n*grad.k() + k)*grad.nr()*grad.nc();
 auto giimg = gi + (n*dest.k() + k)*dest.nr()*dest.nc();
 auto imgbox = get_rect(simg);
 for (long r = 0; r < dest.nr(); ++r)
 {
 for (long c = 0; c < dest.nc(); ++c)
 {
 auto win = centered_rect(c*stride_x+x_offset,
 r*stride_y+y_offset,
 window_width,
 window_height).intersect(imgbox);
 const float delta = giimg[r*dest.nc()+c]/win.area();
 for (long y = win.top(); y <= win.bottom(); ++y)
 {
 for (long x = win.left(); x <= win.right(); ++x)
 {
 gimg[y*grad.nc()+x] += delta;
 }
 }
 }
 }
 }
 }
 }
 }
 // ------------------------------------------------------------------------------------
 // ------------------------------------------------------------------------------------
 // ------------------------------------------------------------------------------------
 void img2col(
 matrix<float>& output,
 const tensor& data,
 long n,
 long filter_nr,
 long filter_nc,
 long stride_y,
 long stride_x,
 long padding_y,
 long padding_x
 )
 {
 const auto d = data.host() + data.k()*data.nr()*data.nc()*n;
 const rectangle boundary = get_rect(data);
 const long out_nr = 1+(data.nr()+2*padding_y-filter_nr)/stride_y;
 const long out_nc = 1+(data.nc()+2*padding_x-filter_nc)/stride_x;
 output.set_size(out_nr*out_nc, 
 data.k()*filter_nr*filter_nc);
 DLIB_CASSERT(output.size() != 0);
 float* t = &output(0,0);
 // now fill in the Toeplitz output matrix for the n-th sample in data. 
 size_t cnt = 0;
 const long max_r = data.nr() + padding_y-(filter_nr-1);
 const long max_c = data.nc() + padding_x-(filter_nc-1);
 for (long r = -padding_y; r < max_r; r+=stride_y)
 {
 for (long c = -padding_x; c < max_c; c+=stride_x)
 {
 for (long k = 0; k < data.k(); ++k)
 {
 for (long y = 0; y < filter_nr; ++y)
 {
 for (long x = 0; x < filter_nc; ++x)
 {
 DLIB_ASSERT(cnt < output.size());
 long xx = c+x;
 long yy = r+y;
 if (boundary.contains(xx,yy))
 *t = d[(k*data.nr() + yy)*data.nc() + xx];
 else
 *t = 0;
 ++t;
 ++cnt;
 }
 }
 }
 }
 }
 }
 void col2img(
 const matrix<float>& output,
 tensor& data,
 long n,
 long filter_nr,
 long filter_nc,
 long stride_y,
 long stride_x,
 long padding_y,
 long padding_x
 )
 {
 const auto d = data.host() + data.k()*data.nr()*data.nc()*n;
 const rectangle boundary = get_rect(data);
 DLIB_CASSERT(output.size() != 0);
 const float* t = &output(0,0);
 // now fill in the Toeplitz output matrix for the n-th sample in data. 
 const long max_r = data.nr() + padding_y-(filter_nr-1);
 const long max_c = data.nc() + padding_x-(filter_nc-1);
 for (long r = -padding_y; r < max_r; r+=stride_y)
 {
 for (long c = -padding_x; c < max_c; c+=stride_x)
 {
 for (long k = 0; k < data.k(); ++k)
 {
 for (long y = 0; y < filter_nr; ++y)
 {
 for (long x = 0; x < filter_nc; ++x)
 {
 long xx = c+x;
 long yy = r+y;
 if (boundary.contains(xx,yy))
 d[(k*data.nr() + yy)*data.nc() + xx] += *t;
 ++t;
 }
 }
 }
 }
 }
 }
 void tensor_conv::operator() (
 const bool add_to_output,
 resizable_tensor& output,
 const tensor& data,
 const tensor& filters
 )
 {
 DLIB_CASSERT(last_stride_y > 0 && last_stride_x > 0, "You must call setup() before calling this function.");
 output.set_size(data.num_samples(),
 filters.num_samples(),
 1+(data.nr()+2*last_padding_y-filters.nr())/last_stride_y,
 1+(data.nc()+2*last_padding_x-filters.nc())/last_stride_x);
 (*this)(add_to_output, static_cast<tensor&>(output),data,filters);
 }
 void tensor_conv::operator() (
 const bool add_to_output,
 tensor& output,
 const tensor& data,
 const tensor& filters
 )
 {
 DLIB_CASSERT(is_same_object(output,data) == false);
 DLIB_CASSERT(is_same_object(output,filters) == false);
 DLIB_CASSERT(filters.k() == data.k());
 DLIB_CASSERT(last_stride_y > 0 && last_stride_x > 0, "You must call setup() before calling this function.");
 DLIB_CASSERT(filters.nr() <= data.nr() + 2*last_padding_y,
 "Filter windows must be small enough to fit into the padded image.");
 DLIB_CASSERT(filters.nc() <= data.nc() + 2*last_padding_x,
 "Filter windows must be small enough to fit into the padded image.");
 DLIB_CASSERT(output.num_samples() == data.num_samples());
 DLIB_CASSERT(output.k() == filters.num_samples());
 DLIB_CASSERT(output.nr() == 1+(data.nr()+2*last_padding_y-filters.nr())/last_stride_y);
 DLIB_CASSERT(output.nc() == 1+(data.nc()+2*last_padding_x-filters.nc())/last_stride_x);
 matrix<float> temp;
 for (long n = 0; n < data.num_samples(); ++n)
 {
 img2col(temp, data, n, filters.nr(), filters.nc(), last_stride_y, last_stride_x, last_padding_y, last_padding_x);
 if (add_to_output)
 output.add_to_sample(n, mat(filters)*trans(temp));
 else 
 output.set_sample(n, mat(filters)*trans(temp));
 }
 }
 // ------------------------------------------------------------------------------------
 void tensor_conv::
 get_gradient_for_data (
 const bool add_to_output,
 const tensor& gradient_input, 
 const tensor& filters,
 tensor& data_gradient
 )
 {
 matrix<float> temp;
 if (!add_to_output)
 data_gradient = 0;
 for (long n = 0; n < gradient_input.num_samples(); ++n)
 {
 auto gi = mat(gradient_input.host()+gradient_input.k()*gradient_input.nr()*gradient_input.nc()*n,
 gradient_input.k(),
 gradient_input.nr()*gradient_input.nc());
 
 temp = trans(gi)*mat(filters);
 col2img(temp, data_gradient, n, filters.nr(), filters.nc(), last_stride_y, last_stride_x, last_padding_y, last_padding_x);
 }
 }
 // ------------------------------------------------------------------------------------
 void tensor_conv::
 get_gradient_for_filters (
 const bool add_to_output,
 const tensor& gradient_input, 
 const tensor& data,
 tensor& filters_gradient
 )
 {
 matrix<float> temp;
 for (long n = 0; n < gradient_input.num_samples(); ++n)
 {
 auto gi = mat(gradient_input.host()+gradient_input.k()*gradient_input.nr()*gradient_input.nc()*n,
 gradient_input.k(),
 gradient_input.nr()*gradient_input.nc());
 img2col(temp, data, n, filters_gradient.nr(), filters_gradient.nc(), last_stride_y, last_stride_x, last_padding_y, last_padding_x);
 if (n == 0)
 {
 if (add_to_output)
 filters_gradient += gi*temp;
 else
 filters_gradient = gi*temp;
 }
 else
 {
 filters_gradient += gi*temp;
 }
 }
 }
 // ------------------------------------------------------------------------------------
 void copy_tensor(
 bool add_to,
 tensor& dest,
 size_t dest_k_offset,
 const tensor& src,
 size_t src_k_offset,
 size_t count_k
 )
 {
 const size_t dest_sample_size = static_cast<size_t>(dest.nc() * dest.nr() * dest.k());
 const size_t src_sample_size = static_cast<size_t>(src.nc() * src.nr() * src.k());
 const size_t block_size = count_k * dest.nc() * dest.nr();
 DLIB_CASSERT(dest.num_samples() == src.num_samples() &&
 dest.nc() == src.nc() && dest.nr() == src.nr(), "All sources should fit into dest tensor size");
 DLIB_CASSERT(dest.k() - dest_k_offset >= count_k, "Not enough space in dest tensor");
 DLIB_CASSERT(src.k() - src_k_offset >= count_k, "Not enough space in src tensor");
 float* dest_p = dest.host() + dest_k_offset * dest.nc() * dest.nr();
 const float* src_p = src.host() + src_k_offset * src.nc() * src.nr();
 for (long i = 0; i < src.num_samples(); ++i)
 {
 if (add_to)
 {
 for (size_t j = 0; j < block_size; ++j)
 dest_p[j] += src_p[j];
 }
 else
 {
 ::memcpy(dest_p, src_p, block_size * sizeof(float));
 }
 dest_p += dest_sample_size;
 src_p += src_sample_size;
 }
 }
 // ------------------------------------------------------------------------------------
 // ------------------------------------------------------------------------------------
 // ------------------------------------------------------------------------------------
 } 
}
#endif // DLIB_DNN_CPU_cPP_

AltStyle によって変換されたページ (->オリジナル) /