Überschallflug: Stoßwellen-Struktur einer mit Überschall fliegenden T-38C mit dem AirBOS-Verfahren sichtbar gemacht (AirBOS, Air-to-Air Background-Oriented Streaks), 2015Machscher Kegel. Rechts ist das Verhalten bei Überschallgeschwindigkeit gezeigt: Es bildet sich eine Stoßwelle (blau).Ein JagdbomberF/A-18 Hornet im Überschallflug. Man sieht den Wolkenscheibeneffekt.
Fliegen mit Überschall bedeutet, dass die Fluggeschwindigkeit größer als die Schallgeschwindigkeit in der Umgebung des Luftfahrzeugs ist. In der Flugphysik werden Geschwindigkeiten mit der Schallgeschwindigkeit dimensionslos gemacht und Mach-Zahl genannt (Abkürzung M oder Ma), benannt nach dem Physiker Ernst Mach. Überschallflug heißt also Fliegen mit Ma > 1.
Die Schallgeschwindigkeit ist definiert durch {\displaystyle c={\sqrt {\kappa ,円R_{\mathrm {s} },円T}}}, wobei κ (kappa) das Verhältnis der spezifischen Wärmen, {\displaystyle R_{\mathrm {s} }} die spezifische Gaskonstante der Luft und T die thermodynamische Temperatur (gemessen in Kelvin) (Einheit K) sind. Sie ist also abhängig von der Temperatur, aber unabhängig vom Luftdruck. Die Luftfeuchtigkeit erhöht geringfügig das Produkt {\displaystyle \kappa ,円R_{\mathrm {s} }}, doch ist der Einfluss auf die Schallgeschwindigkeit selbst unter tropischen Bedingungen geringer als 1 %. In trockener Luft ist {\displaystyle R_{\mathrm {s} }=287{,}058\ \mathrm {{J}/({kg,円K})} } und {\displaystyle \kappa =1{,}402}. Für {\displaystyle T=288{,}15\ \mathrm {K} =15\ ^{\circ }\mathrm {C} } ergibt sich dann eine Schallgeschwindigkeit von {\displaystyle c=340{,}54\ \mathrm {m/s} =1225{,}94\ \mathrm {km/h} }. Mit zunehmender Flughöhe nimmt die Schallgeschwindigkeit wegen der niedriger werdenden Temperaturen ab. Im Bereich der üblichen Flughöhen oberhalb 11 km hat die Normatmosphäre eine Temperatur von {\displaystyle T=216{,}65\ \mathrm {K} =-56{,}5\ ^{\circ }\mathrm {C} }. Daraus ergibt sich eine Schallgeschwindigkeit von {\displaystyle c=295{,}1\ \mathrm {m/s} =1062\ \mathrm {km/h} }.
Nähert sich das Flugzeug der Schallgeschwindigkeit (Ma = 1), kommt es durch die Kompressibilität der Luft zu Stoßwellen an verschiedenen Teilen des Flugzeugs (siehe auch Verdichtungsstoß). Dadurch steigt der aerodynamische Widerstand (Winddruck) erheblich an, bis diese Grenze, bildhaft Schallmauer genannt, überwunden ist. Danach sinkt der Widerstand wieder ab (bleibt jedoch höher als im Unterschallbereich). Moderne militärische Triebwerke liefern im Normalbetrieb ausreichend Schub, um dauerhaft im Horizontalflug Überschall fliegen zu können, was als Supercruise bezeichnet wird. Ältere Flugzeugmodelle benötigen hierzu einen Nachbrenner oder müssen sich in einen Sturzflug begeben, um auf Überschallgeschwindigkeit beschleunigen zu können. Die Fluggeschwindigkeit, bei der im Luftstrom um das Flugzeug die ersten Überschallgebiete und damit auch Verdichtungsstöße auftreten, liegt – abhängig von der Konstruktion des Flugzeugs mehr oder weniger deutlich – unterhalb der Schallgeschwindigkeit. Bei ausreichender Luftfeuchtigkeit entstehen in diesen Gebieten Kondensationswolken, deren hinteres Ende von einem Stoß gekennzeichnet ist (Wolkenscheibeneffekt) (siehe Foto). Der Geschwindigkeitsbereich, in dem bei der Umströmung des Flugzeugs sowohl Gebiete mit Geschwindigkeiten größer als auch kleiner Schallgeschwindigkeit auftreten, wird transsonisch genannt und überstreicht einen Fluggeschwindigkeitsbereich von etwa Ma = 0,8 bis 1,2.
Für die Überwindung der Schallmauer war die Entwicklung des Pfeilflügels sehr wichtig.[1]
Dadurch konnte der Widerstandsanstieg bei Annäherung an die Schallgeschwindigkeit stark verringert werden. Zur Überwindung der Schallmauer mit einem Flugzeug ist es aber meist zusätzlich nötig, die Flächenregel zu beachten. Danach darf sich der Querschnitt des Flugzeugs als Funktion der axialen Position nur langsam ändern. Erst die Berücksichtigung dieser Regel und nach erheblichen Änderungen am Rumpf konnte als erstes Flugzeug die YF-102A mit eigenen Triebwerken im Horizontalflug auf Überschallgeschwindigkeit beschleunigt werden.[2]
Der erste Prototyp der YF102A durchbrach sogar bei seinem allerersten Flug (20. Dezember 1954, Lindbergh Field bei San Diego) die Schallmauer noch im Steigflug.[2]
Ist die Schallgeschwindigkeit überschritten (Ma>1), breitet sich – von der Flugzeugnase und den Tragflächen ausgehend – der sogenannte Machsche Kegel kegelförmig nach hinten aus.
Da die Luft nicht ausreichend schnell abfließt, kommt es aufgrund des Staudrucks, insbesondere an den Stirnflächen, zu einer verdichtungsbedingten Erwärmung der Luft und somit des Flugkörpers. Diese Erwärmung wird bei höherer Überschallgeschwindigkeit so groß, dass das für den Flugzeugbau übliche Aluminium in seiner Festigkeit bis zum Versagen beeinträchtigt wird.
Der Überschallknall ist die hörbare Auswirkung der Stoßwelle (Verdichtungsstoß), welche auftritt, wenn sich ein Körper mit Überschallgeschwindigkeit durch ein Medium bewegt.
Kegelförmige Ausbreitung der Druckwelle hinter einem Überschallflugkörper, Verlauf des hyperbelförmigen Bodenkontakts der DruckwelleÜberschall-DoppelknallFlügel – Luftstrom bei Überschallgeschwindigkeit
Diese Stoßwelle hat die Form zweier Kegel, einer an der Flugzeugnase und einer am Flugzeugheck. Die Kegel öffnen sich entgegen der Flugrichtung. Bei kleinen Flugzeugen oder Projektilen laufen diese dicht genug zusammen, um als einzelner Knall wahrgenommen zu werden; bei großen Flugzeugen sind die Stoßwellen klar unterscheidbar und verursachen einen „Doppelknall" im Abstand weniger Hundertstelsekunden (das menschliche Gehör kann sehr kleine Zeitunterschiede feststellen (Laufzeitdifferenz)). Bei großer Entfernung zum Beobachter nimmt der zeitliche Abstand zwischen beiden Stoßwellen weiter zu und kann bei großen Flugzeugen oder Raumfähren mehrere Zehntelsekunden betragen. Der Grund für diese Zunahme sind geringfügige Unterschiede in der Ausbreitungsgeschwindigkeit der Stoßwellen; anders als bei normalen Schallwellen ist die Ausbreitungsgeschwindigkeit von Stoßwellen von ihrer Amplitude abhängig.
Auch wenn der Knall an einer Stelle nur einmalig wahrgenommen wird, entsteht keineswegs, wie häufig irrtümlich angenommen, ein einziger Knall, wenn die Schallmauer durchbrochen wird. Die untere Mantellinie des Kegels bestimmt den Zeitpunkt, wann der Knall den Empfänger erreicht und dieser ihn hört, noch vor der Wahrnehmung z. B. der Motorengeräusche. Währenddessen bewegt sich der Kegel allerdings fort, weshalb ein weiterer Empfänger in einiger Entfernung ebenfalls von ihm erreicht wird und einen weiteren Knall hört. Der Knall beim Fliegen mit Überschallgeschwindigkeit wird erst nach dem Überfliegen des Beobachters (verzögert um die Flughöhe, also bei 340 Metern um eine Sekunde) von diesem wahrgenommen. Der Schall und damit der Überschallknall eines sich mit Überschallgeschwindigkeit bewegenden Objekts wird demnach „nachgeschleppt" und ist über die gesamte Flugbahn zu hören (Knallteppich).
Mit zunehmender Geschwindigkeit legen sich die Kegel „enger" um das Flugzeug, und gleichzeitig nimmt – aufgrund der höheren Energie, die pro Wegeinheit an die Luft übergeben wird – ihre Amplitude und damit auch die Lautstärke des Überschallknalls zu. Die Lautstärke des Knalls hängt zudem von der Menge der verdrängten Luft und somit von der Größe des Flugzeugs ab. Die pro Wegstrecke s freigesetzte Energie E ist dabei
wobei {\displaystyle c'_{\mathrm {w} }} der Widerstandsbeiwert im Überschallbereich ist und zumeist etwa das Doppelte des Wertes {\displaystyle c_{\mathrm {w} }} im Unterschallbereich beträgt. Ferner ist {\displaystyle A} die Stirnfläche des Flugzeugs, {\displaystyle \rho } die Luftdichte und {\displaystyle v} die Fluggeschwindigkeit relativ zur umgebenden Luft. Entsprechend ist die an die Luft abgegebene Leistung bei konstanter Fluggeschwindigkeit
Die Energie pro Streckeneinheit ist maßgebend für die Amplitude und damit für die Lautstärke des Knalls, während die Leistung direkten Einfluss auf den Treibstoffverbrauch hat.
Bei sehr großen Flughöhen berühren die Kegel nicht mehr den Boden, sondern wandeln sich in sehr niederfrequente Schallwellen um, und der Knall wird dort nicht mehr wahrgenommen (siehe auch:Infraschall). Bei sehr großen Flugkörpern oder extrem hohen Überschallgeschwindigkeiten kann die Druckwelle dennoch stark und/oder zeitlich konzentriert genug sein, dass hörbare Schallwellen oder gar Stoßwellen den Boden erreichen. Das ist z. B. beim Wiedereintritt von Raumfähren oder beim Eintritt von größeren Meteoroiden der Fall.
Die Concorde erhöhte aus diesen Lärmgründen die Fluggeschwindigkeit im Normalfall nur über unbewohntem Gebiet (in der Regel über dem offenen Meer) auf Überschall.
Eine Besonderheit stellt deswegen auch der Flug einer Concorde 1986 von Paris nach Leipzig dar. Vom Drehfunkfeuer (VOR) Trent auf Rügen bis zum VOR Fürstenwalde flog die Maschine mit Überschall über das Gebiet der DDR. Die DDR führte Schallmessungen durch und übermittelte die Ergebnisse an die französische Seite.
Die ersten von Menschenhand geschaffene Objekte, die die Schallgeschwindigkeit überschritten, waren die Enden von Peitschen und Schleudern. Die theoretische Beschreibung des Peitschenknalles gelang dem Physiker István Szabó und vorher Richard Grammel.
Am 1. Juli 1941 erreichte Heini Dittmar mit der Me 163 BV18 Komet VA+SP hoch über der Luftwaffen-Erprobungsstelle Peenemünde-West eine Geschwindigkeit von 1004 km/h und war dabei der erste Pilot, der bei seinem Flug eine Geschwindigkeit im Bereich der Kritischen Machzahl erreichte. Im Magazin Der Spiegel wurde Dittmar wie folgt zitiert: „Diese so genannten Mach-Erscheinungen, die ich als erster Pilot erlebte, waren das erste Anklopfen an die Schallmauer."[3]
In Großbritannien wurden 1943 die von Jagdfliegern in Extremsituationen gespürten Kräfte mit Propellerflugzeugen erforscht; in Sturzflügen wurde auf Flughöhen von 12 Kilometern (um 40.000 Fuß) eine Machzahl von 0,9 erreicht. Es war aber auch klar, dass höhere Geschwindigkeiten nicht erreichbar wären, da der Propeller bei diesen Geschwindigkeiten mehr Widerstand als Vortriebskraft erzeugte.[4] Unabhängig davon wären Motorleistungen erforderlich, die mit Hubkolbenmotoren nicht realisierbar sind.[5]
Der deutsche Jagdflieger Hans Guido Mutke will am 9. April 1945 mit einer Messerschmitt Me 262 die Schallmauer durchbrochen haben. Allerdings fehlt für die Behauptung jeder Beweis. Auch Wolfgang Czaia, der deutsche Testpilot des Me-262-Nachbauprojektes,[6] hält diese Behauptung für nicht realistisch. Er hat als Testpilot beide in den USA bisher nachgebauten Me 262 eingeflogen und kennt daher deren Daten und Parameter sehr genau.[7] Piloten der ersten Düsenflugzeuge stellten fest, dass mit der damaligen Technologie ein Durchbrechen der Schallmauer wenig wahrscheinlich war. Bei Geschwindigkeiten über Mach 0,95 traten schwere mechanische Belastungen auf, die Steuerungswirkung ging verloren. In Einzelfällen stürzten die Maschinen dadurch ab oder brachen auseinander.
Am 1. Oktober 1947 durchbrach George Welch mit einem Prototyp der North American F-86 Sabre im 40-Grad-Sturzflug die Schallmauer. Da der Geschwindigkeitsmesser aber nicht auf die entsprechende Höhe kalibriert war und auch keine Geschwindigkeitsmessung vom Boden aus stattfand, wurde der Flug offiziell nicht gewertet.