Code typically requires "opening" handles or references to resources such as memory, files, devices, socket connections, services, etc. When the code is finished with using the resource, it is typically expected to "close" or "release" the resource, which indicates to the environment (such as the OS) that the resource can be re-assigned or reused by unrelated processes or actors - or in some cases, within the same process. API functions or other abstractions are often used to perform this release, such as free() or delete() within C/C++, or file-handle close() operations that are used in many languages.
Unfortunately, the implementation or design of such APIs might expect the developer to be responsible for ensuring that such APIs are only called once per release of the resource. If the developer attempts to release the same resource/handle more than once, then the API's expectations are not met, resulting in undefined and/or insecure behavior. This could lead to consequences such as memory corruption, data corruption, execution path corruption, or other consequences.
Note that while the implementation for most (if not all) resource reservation allocations involve a unique identifier/pointer/symbolic reference, then if this identifier is reused, checking the identifier for resource closure may result in a false state of openness and closing of the wrong resource. For this reason, reuse of identifiers is discouraged.
| Impact | Details |
|---|---|
|
DoS: Crash, Exit, or Restart |
Scope: Availability, Integrity Likelihood: Medium |
| Phase(s) | Mitigation |
|---|---|
|
Implementation |
Change the code's logic so that the resource is only closed once. This might require simplifying or refactoring. This fix can be simple to do in small code blocks, but more difficult when multiple closes are buried within complex conditionals.
|
|
Implementation |
Strategy: Refactoring It can be effective to implement a flag that is (1) set when the resource is opened, (2) cleared when it is closed, and (3) checked before closing. This approach can be useful when there are disparate cases in which closes must be performed. However, flag-tracking can increase code complexity and requires diligent compliance by the programmer.
|
|
Implementation |
Strategy: Refactoring When closing a resource, set the resource's associated variable to NULL or equivalent value for the given language. Some APIs will ignore this null value without causing errors. For other APIs, this can lead to application crashes or exceptions, which may still be preferable to corrupting an unintended resource such as memory or data.
Effectiveness: Defense in Depth |
| Nature | Type | ID | Name |
|---|---|---|---|
| ChildOf | Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. | 675 | Multiple Operations on Resource in Single-Operation Context |
| ParentOf | Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. | 415 | Double Free |
| CanPrecede | Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. | 672 | Operation on a Resource after Expiration or Release |
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | Category Category - a CWE entry that contains a set of other entries that share a common characteristic. | 399 | Resource Management Errors |
| Phase | Note |
|---|---|
| Implementation |
Java (Undetermined Prevalence)
Rust (Undetermined Prevalence)
Class: Not Language-Specific (Undetermined Prevalence)
C (Undetermined Prevalence)
C++ (Undetermined Prevalence)
Class: Not OS-Specific (Undetermined Prevalence)
Class: Not Architecture-Specific (Undetermined Prevalence)
Class: Not Technology-Specific (Undetermined Prevalence)
Example 1
This example attempts to close a file twice. In some cases, the C library fclose() function will catch the error and return an error code. In other implementations, a double-free (CWE-415) occurs, causing the program to fault. Note that the examples presented here are simplistic, and double fclose() calls will frequently be spread around a program, making them more difficult to find during code reviews.
There are multiple possible fixes. This fix only has one call to fclose(), which is typically the preferred handling of this problem - but this simplistic method is not always possible.
This fix uses a flag to call fclose() only once. Note that this flag is explicit. The variable "f" could also have been used as it will be either NULL if the file is not able to be opened or a valid pointer if the file was successfully opened. If "f" is replacing "f_flg" then "f" would need to be set to NULL after the first fclose() call so the second fclose call would never be executed.
Example 2
The following code shows a simple example of a double free vulnerability.
Double free vulnerabilities have two common (and sometimes overlapping) causes:
Although some double free vulnerabilities are not much more complicated than this example, most are spread out across hundreds of lines of code or even different files. Programmers seem particularly susceptible to freeing global variables more than once.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
| Reference | Description |
|---|---|
|
file descriptor double close can cause the wrong file to be associated with a file descriptor.
|
|
|
Double free resultant from certain error conditions.
|
| Method | Details |
|---|---|
|
Automated Static Analysis |
For commonly-used APIs and resource types, automated tools often have signatures that can spot this issue.
|
|
Automated Dynamic Analysis |
Some compiler instrumentation tools such as AddressSanitizer (ASan) can indirectly detect some instances of this weakness.
|
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1412 | Comprehensive Categorization: Poor Coding Practices |
Rationale
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.Comments
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.Terminology
| Submissions | ||
|---|---|---|
| Submission Date | Submitter | Organization |
|
2021年09月07日
(CWE 4.6, 2021年10月28日) |
CWE Content Team | MITRE |
| Modifications | ||
| Modification Date | Modifier | Organization |
| 2023年06月29日 | CWE Content Team | MITRE |
| updated Mapping_Notes | ||
| 2023年04月27日 | CWE Content Team | MITRE |
| updated Relationships | ||
| 2022年10月13日 | CWE Content Team | MITRE |
| updated References | ||
| 2022年04月28日 | CWE Content Team | MITRE |
| updated Demonstrative_Examples, Description, Potential_Mitigations | ||
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.