| Impact | Details |
|---|---|
|
Modify Application Data |
Scope: Confidentiality, Integrity, Non-Repudiation, Access Control
Likelihood: Low
If the website does not impose additional defense against CSRF attacks, failing to use the 'Lax' or 'Strict' values could increase the risk of exposure to CSRF attacks. The likelihood of the integrity breach is Low because a successful attack does not only depend on an insecure SameSite attribute. In order to perform a CSRF attack there are many conditions that must be met, such as the lack of CSRF tokens, no confirmations for sensitive actions on the website, a "simple" "Content-Type" header in the HTTP request and many more.
|
| Phase(s) | Mitigation |
|---|---|
|
Implementation |
Set the SameSite attribute of a sensitive cookie to 'Lax' or 'Strict'. This instructs the browser to apply this cookie only to same-domain requests, which provides a good Defense in Depth against CSRF attacks. When the 'Lax' value is in use, cookies are also sent for top-level cross-domain navigation via HTTP GET, HEAD, OPTIONS, and TRACE methods, but not for other HTTP methods that are more like to cause side-effects of state mutation.
Effectiveness: High Note:
While this mitigation is effective for protecting cookies from a browser's own scripting engine, third-party components or plugins may have their own engines that allow access to cookies. Attackers might also be able to use XMLHTTPResponse to read the headers directly and obtain the cookie.
|
| Nature | Type | ID | Name |
|---|---|---|---|
| ChildOf | Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. | 923 | Improper Restriction of Communication Channel to Intended Endpoints |
| CanPrecede | Composite Composite - a Compound Element that consists of two or more distinct weaknesses, in which all weaknesses must be present at the same time in order for a potential vulnerability to arise. Removing any of the weaknesses eliminates or sharply reduces the risk. One weakness, X, can be "broken down" into component weaknesses Y and Z. There can be cases in which one weakness might not be essential to a composite, but changes the nature of the composite when it becomes a vulnerability. | 352 | Cross-Site Request Forgery (CSRF) |
| Phase | Note |
|---|---|
| Implementation | This weakness occurs during implementation when the coder does not properly set the SameSite attribute. |
Class: Not Language-Specific (Undetermined Prevalence)
Class: Not OS-Specific (Undetermined Prevalence)
Class: Not Architecture-Specific (Undetermined Prevalence)
Class: Web Based (Undetermined Prevalence)
Example 1
In this example, a cookie is used to store a session ID for a client's interaction with a website. The snippet of code below establishes a new cookie to hold the sessionID.
Since the sameSite attribute is not specified, the cookie will be sent to the website with each request made by the client. An attacker can potentially perform a CSRF attack by using the following malicious page:
When the client visits this malicious web page, it submits a '/setEmail' POST HTTP request to the vulnerable website. Since the browser automatically appends the 'sessionid' cookie to the request, the website automatically performs a 'setEmail' action on behalf of the client.
To mitigate the risk, use the sameSite attribute of the 'sessionid' cookie set to 'Strict'.
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
| Reference | Description |
|---|---|
|
Web application for a room automation system has client-side JavaScript that sets a sensitive cookie without the SameSite security attribute, allowing the cookie to be sniffed
|
| Method | Details |
|---|---|
|
Automated Static Analysis |
Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Effectiveness: High |
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1345 | OWASP Top Ten 2021 Category A01:2021 - Broken Access Control |
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1396 | Comprehensive Categorization: Access Control |
Rationale
This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.Comments
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.| CAPEC-ID | Attack Pattern Name |
|---|---|
| CAPEC-62 | Cross Site Request Forgery |
| Submissions | ||
|---|---|---|
| Submission Date | Submitter | Organization |
|
2020年06月19日
(CWE 4.1, 2020年02月24日) |
Michael Stepankin | Veracode |
| Modifications | ||
| Modification Date | Modifier | Organization |
|
2025年09月09日
(CWE 4.18, 2025年09月09日) |
CWE Content Team | MITRE |
| updated References | ||
| 2023年10月26日 | CWE Content Team | MITRE |
| updated Demonstrative_Examples, Observed_Examples | ||
| 2023年06月29日 | CWE Content Team | MITRE |
| updated Mapping_Notes | ||
| 2023年04月27日 | CWE Content Team | MITRE |
| updated Detection_Factors, References, Relationships | ||
| 2023年01月31日 | CWE Content Team | MITRE |
| updated Relationships | ||
| 2022年10月13日 | CWE Content Team | MITRE |
| updated Demonstrative_Examples | ||
| 2021年10月28日 | CWE Content Team | MITRE |
| updated Relationships | ||
| 2020年08月20日 | CWE Content Team | MITRE |
| updated Demonstrative_Examples, Related_Attack_Patterns | ||
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.