torch: Tensors and Neural Networks with 'GPU' Acceleration
Provides functionality to define and train neural networks similar to
'PyTorch' by Paszke et al (2019) <doi:10.48550/arXiv.1912.01703> but written entirely in R
using the 'libtorch' library. Also supports low-level tensor operations and
'GPU' acceleration.
Version:
0.16.3
Imports:
Rcpp,
R6,
withr,
rlang (≥ 1.0.0), methods, utils, stats,
bit64,
magrittr, tools,
coro (≥ 1.0.2),
callr,
cli (≥ 3.0.0),
glue,
desc,
safetensors (≥ 0.1.1),
jsonlite,
scales
Published:
2025年11月02日
Author:
Daniel Falbel [aut, cre, cph],
Javier Luraschi [aut],
Dmitriy Selivanov [ctb],
Athos Damiani [ctb],
Christophe Regouby [ctb],
Krzysztof Joachimiak [ctb],
Hamada S. Badr [ctb],
Sebastian Fischer [ctb],
Maximilian Pichler [ctb],
RStudio [cph]
Maintainer:
Daniel Falbel <daniel at rstudio.com>
NeedsCompilation:
yes
SystemRequirements:
LibTorch (https://pytorch.org/); Only x86_64
platforms are currently supported except for ARM system running
macOS.
Documentation:
Downloads:
Reverse dependencies:
Reverse imports:
BKTR,
brulee,
causalOT,
circlus,
cito,
crumble,
deepregression,
engression,
EQRN,
geodl,
glmnetr,
innsight,
lambdaTS,
LBBNN,
luz,
madgrad,
nFunNN,
PLNmodels,
proteus,
RGAN,
scDHA,
SCFA,
SEMdeep,
shrinkGPR,
sits,
spinner,
survdnn,
tabnet,
temper,
topicmodels.etm,
torchdatasets,
torchMAUM,
torchopt,
torchvision,
torchvisionlib,
unfold
Reverse suggests:
bundle,
COTAN,
DistributionIV,
einops,
fairGATE,
fairGNN,
gofigR,
GPUmatrix,
mlr3resampling,
MLwrap,
nn2poly,
safetensors,
shapr,
svrep,
targets,
vetiver
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=torch
to link to this page.