Pool Model Performance

Martijn W Heymans

2023年06月16日

Introduction

The psfmi package includes the function pool_performance, to pool the performance measures of logistic and Cox regression models. This vignette show you how to use this function.

Examples

Performance Logistic regression model

The performance of a logistic regression model across multiply imputed datasets can be obtained as follows.

 
perf <- pool_performance(data=lbpmilr, nimp=5, impvar="Impnr", 
 formula = Chronic ~ Gender + Pain + Tampascale + 
 Smoking + Function + Radiation + Age + 
 Duration + BMI, 
 cal.plot=TRUE, plot.method="mean", 
 groups_cal=10, model_type="binomial")
 
perf
 #> $ROC_pooled
 #> 95% Low C-statistic 95% Up
 #> C-statistic (logit) 0.7878 0.8626 0.9139
 #> 
 #> $coef_pooled
 #> (Intercept) Gender Pain Tampascale Smoking Function 
 #> -5.951990403 -0.300998171 0.533421791 0.104519460 0.168974909 -0.063384729 
 #> Radiation Age Duration BMI 
 #> 0.256421438 -0.014809697 -0.001136425 0.006379084 
 #> 
 #> $R2_pooled
 #> [1] 0.4882147
 #> 
 #> $Brier_Scaled_pooled
 #> [1] 0.3946362
 #> 
 #> $nimp
 #> [1] 5
 #> 
 #> $HLtest_pooled
 #> F_value P(>F) df1 df2
 #> [1,] 1.090127 0.3779371 8 85.96895
 #> 
 #> $model_type
 #> [1] "binomial"

Performance Cox regression model

For a Cox regression model the following code can be used.

 
perf <- pool_performance(data=lbpmicox, nimp=5, impvar="Impnr", 
 formula = Surv(Time, Status) ~ Duration + Pain + Tampascale + 
 factor(Expect_cat) + Function + Radiation + Age , 
 cal.plot=FALSE, model_type="survival")
 
perf
 #> $concordance_pooled
 #> 95% Low C-statistic 95% Up
 #> C-statistic (logit) 0.5733 0.621 0.6664
 #> 
 #> $coef_pooled
 #> Duration Pain Tampascale factor(Expect_cat)2 
 #> -0.007680610 -0.085077440 -0.018125989 0.306105694 
 #> factor(Expect_cat)3 Function Radiation Age 
 #> 0.269403151 0.038106572 -0.037816020 -0.008903958 
 #> 
 #> $R2_pooled
 #> [1] 0.09049936
 #> 
 #> $nimp
 #> [1] 5
 #> 
 #> $model_type
 #> [1] "survival"

AltStyle によって変換されたページ (->オリジナル) /