mboost: Model-Based Boosting

Functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalised) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data. Models and algorithms are described in <doi:10.1214/07-STS242>, a hands-on tutorial is available from <doi:10.1007/s00180-012-0382-5>. The package allows user-specified loss functions and base-learners.

Version: 2.9-11
Depends: R (≥ 3.2.0), methods, stats, parallel, stabs (≥ 0.5-0)
Imports: Matrix, survival (≥ 3.2-10), splines, lattice, nnls, quadprog, utils, graphics, grDevices, partykit (≥ 1.2-1)
Suggests: TH.data, MASS, fields, BayesX, gbm, mlbench, RColorBrewer, rpart (≥ 4.0-3), randomForest, nnet, testthat (≥ 0.10.0), kangar00
Published: 2024年08月22日
Author: Torsten Hothorn ORCID iD [cre, aut], Peter Buehlmann ORCID iD [aut], Thomas Kneib ORCID iD [aut], Matthias Schmid ORCID iD [aut], Benjamin Hofner ORCID iD [aut], Fabian Otto-Sobotka ORCID iD [ctb], Fabian Scheipl ORCID iD [ctb], Andreas Mayr ORCID iD [ctb]
Maintainer: Torsten Hothorn <Torsten.Hothorn at R-project.org>
License: GPL-2
NeedsCompilation: yes
Materials: NEWS
CRAN checks: mboost results

Documentation:

Reference manual: mboost.html , mboost.pdf

Downloads:

Package source: mboost_2.9-11.tar.gz
Windows binaries: r-devel: mboost_2.9-11.zip, r-release: mboost_2.9-11.zip, r-oldrel: mboost_2.9-11.zip
macOS binaries: r-release (arm64): mboost_2.9-11.tgz, r-oldrel (arm64): mboost_2.9-11.tgz, r-release (x86_64): mboost_2.9-11.tgz, r-oldrel (x86_64): mboost_2.9-11.tgz
Old sources: mboost archive

Reverse dependencies:

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mboost to link to this page.

AltStyle によって変換されたページ (->オリジナル) /