bst: Gradient Boosting

Functional gradient descent algorithm for a variety of convex and non-convex loss functions, for both classical and robust regression and classification problems. See Wang (2011) <doi:10.2202/1557-4679.1304>, Wang (2012) <doi:10.3414/ME11-02-0020>, Wang (2018) <doi:10.1080/10618600.2018.1424635>, Wang (2018) <doi:10.1214/18-EJS1404>.

Version: 0.3-24
Imports: rpart, methods, foreach, doParallel, gbm
Suggests: hdi, pROC, R.rsp, knitr, gdata
Published: 2023年01月06日
Author: Zhu Wang ORCID iD [aut, cre], Torsten Hothorn [ctb]
Maintainer: Zhu Wang <zwang145 at uthsc.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: bst citation info
Materials: NEWS
In views: MachineLearning
CRAN checks: bst results

Documentation:

Reference manual: bst.html , bst.pdf

Downloads:

Package source: bst_0.3-24.tar.gz
Windows binaries: r-devel: bst_0.3-24.zip, r-release: bst_0.3-24.zip, r-oldrel: bst_0.3-24.zip
macOS binaries: r-release (arm64): bst_0.3-24.tgz, r-oldrel (arm64): bst_0.3-24.tgz, r-release (x86_64): bst_0.3-24.tgz, r-oldrel (x86_64): bst_0.3-24.tgz
Old sources: bst archive

Reverse dependencies:

Reverse imports: bujar, mpath
Reverse suggests: flowml, mlr

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bst to link to this page.

AltStyle によって変換されたページ (->オリジナル) /