SelectBoost: A General Algorithm to Enhance the Performance of Variable Selection Methods in Correlated Datasets

An implementation of the selectboost algorithm (Bertrand et al. 2020, 'Bioinformatics', <doi:10.1093/bioinformatics/btaa855>), which is a general algorithm that improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.

Version: 2.3.0
Depends: R (≥ 3.5)
Imports: lars, glmnet, igraph, parallel, msgps, Rfast, methods, Cascade, graphics, grDevices, varbvs, spls, abind
Suggests: knitr, markdown, rmarkdown, mixOmics, CascadeData, testthat (≥ 3.0.0)
Published: 2025年09月14日
Author: Frederic Bertrand ORCID iD [cre, aut], Myriam Maumy-Bertrand ORCID iD [aut], Ismail Aouadi [ctb], Nicolas Jung [ctb]
Maintainer: Frederic Bertrand <frederic.bertrand at lecnam.net>
License: GPL-3
NeedsCompilation: no
Classification/MSC: 62H11, 62J12, 62J99
Materials: README, NEWS
CRAN checks: SelectBoost results

Documentation:

Reference manual: SelectBoost.html , SelectBoost.pdf

Downloads:

Windows binaries: r-devel: SelectBoost_2.3.0.zip, r-release: SelectBoost_2.3.0.zip, r-oldrel: SelectBoost_2.3.0.zip
macOS binaries: r-release (arm64): SelectBoost_2.3.0.tgz, r-oldrel (arm64): SelectBoost_2.3.0.tgz, r-release (x86_64): SelectBoost_2.3.0.tgz, r-oldrel (x86_64): SelectBoost_2.3.0.tgz

Reverse dependencies:

Reverse imports: Patterns, SelectBoost.gamlss

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SelectBoost to link to this page.

AltStyle によって変換されたページ (->オリジナル) /