Implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <doi:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation.
Please use the canonical form https://CRAN.R-project.org/package=mashr to link to this page.