1
\$\begingroup\$

Problem is taken from leet code. Give a string s, count the number of non-empty (contiguous) substrings that have the same number of 0's and 1's, and all the 0's and all the 1's in these substrings are grouped consecutively. Substrings that occur multiple times are counted the number of times they occur.

Example 1:

Input: "00110011"
Output: 6
Explanation: There are 6 substrings that have equal number of consecutive 1's and 0's:
"0011", "01", "1100", "10", "0011", and "01".
Notice that some of these substrings repeat and are counted the number of times they occur.

Here is my scala implementation of the same

object SubStrings extends App {
 def countBinarySubstrings(s: String): Int = {
 val (_,_, total) = s.foldLeft((0,0,0)) { case ((count0, count1, total), c) =>
 if(count0 == 0 && count1 == 0) {=
 if (c == '0') (count0 + 1, count1, total)
 else (count0, count1 + 1, total)
 } else {
 if (c == '0' ) {
 val newCount0 = count0 + 1
 if (count1 > 0) (newCount0, count1-1, total+1)
 else (newCount0, count1, total)
 } else {
 val newCount1 = count1 + 1
 if (count0 > 0) (count0-1, newCount1,total+1)
 else (count0,newCount1,total)
 }
 }
 }
 total
 }

Solution works for few strings I tested. But it seems there is a bug in this code as it is failing for one of the test case on the leet code. I am not able to figure it out. Kindly help.

Failing test case is this -

"1100111110110110011111111111110011001011111111100110111111111101010010011110001111110111101111110101110100001111001110011101011000111011101011111110101100101111110101101101111111001111111000011110110101111111111010101001111100010000001001101001100101111110110111110111111010011001110111101110001011100110011010001011100000001101000011100111111010110101110110000011110110111101010110010101111101011111111111110100110101111101111001101011101111111111100111011011010010110111111101110011011111111110001110110000101111111111101110011111011100010111110011110111111110111000110101011101101011101011011100011101101111110111000111110101100110111111001111110111111101101110011101110111110111111101001111100111010111011110011011100101100101010110001011100110111101111110111111111110010101100100111110101011111010101101101111110111111011011001001111001111000111010111100100110011111111100100111100011111011100001001101111011011110010101110001111010000001111110001011000110110111111000110001110101100111111100011100101000111011101110011111111111011111101111110011110111101110011111101110111110111111101111101011010111110110011011101101111100001000101010110110111011111110111111100110111011001111011100011011100101010111111111101110010101101001111011110111011110011000000110111111111101111010110010010111111100111110111000101111010111011111111111000001011111011110111111111111100100100001101101111110010000111101001111111101011010011110011011111000111010000010110011011011011111111110011111101100010111011010111011111111110101110101001101100010111111001101011011111001000101011111011111011110110101111111011011110101111001010110001101011000110110011111101100111110100101111011001000111111110100111101100101111111010110110011110010010111010111111101111101111101001110011101111110001110111010011011101111100011111111101010101101011111111100110111100111101110110010110111100011111010110011111101101101000110110001010001111011100100111111111011111011111111100101111001111110011010010010111111110110001001101111110011111010110011101111110110010000001111111000110111101101111010111110001011100011111011100100000111111011011010010100110101011001111111101111010111111000101110001011111010110110111111111111101101011100000110101001111010110111100011011110100110111111111111111100011011011110011010011100111111111110110111001110100110111010010110111111111111111110001101111011111110111010001101110111110100111110111111110110111111111011111000000101101101111011011111111111111011111000101111111101111111111111111111111100100111000011010001000110110110111111110101111000110100100001111011100111111010100101101010100000111001111101011001111110111011111011010111111011111011010100111011110001000010111110110111110111011011010001010101101111111101111100010010111101100000110100101111010100111101110111011101001101101111001110111101101111101000110110110111101111011011101010001111010011111110111011011100001111111111111000111010101001110010100011011011101111010111110011111010101101010101111110010101111010111001110000011110100011110110111101001110011101110110101111111000101111010111110111110001111110100100001101010001011111110010110110000101111110110111101000101111011111011001100000111111111101010010100111100111110111100011111101111011111100111110000101111011101001001111001101110100100101101111001111111111000110111111101010110011010010011001000111100010100111111001101111110011111000111101011101111110101111101111010110111111101111011111111111100001101100110110011111111101111111101011010010110110011101000111101111110111111011111111110110011100001111110001111011100111111101011111110100110000110011001011111001001110111011110101101101011011011010011110111011100101011011001110001001101011010111000001101011111111101011001111001001100001111110101001111111011100000111100110101010010111101110111011111010110101111101100111111110011011101011101111110011000110111010110011111111111100111011101111011111101111110011101011100101100100111111111111011011100111111111100101111111001111010100011011111001000010111101111111011111100111110111010101111111011111011010000110010111011011000111111011010000111001010101111101011111010111100011001011110111011101110001000111111111100101100110011011011110111111000100010111111011110100111010111111111001011111111111001111110110010011001111100111011110011111000101101111100110011000010100110111101100111110111101111011111100110011011111011001101010111111111010111111100101101011111111011100001111011011111111011111110010100110000000011000010111011101111101111111101101111001011111010110110101011100001110100101001111001111011101101010011010110111101111110101101111100110111101111111101010000101010010001110111000110101101100101111101101011100101111011111101111011110100001011110110111111111011000111111001111010111011010111000101110011010110010111111101111111110111011111010110111111001010111001110110101011000111110000010001101111111000011010110111100010111110010001110011111001110101001000100111011110000100111101101111010011101011010101101000011111111011101111111101111101101110111011111001110111101010111000101010111010111110110010110110111111110111111110011101111011111011111111001111110100110100010110001111101111000111100111101101010110100110110110111001111111111010011011001111111111111010111011101101010100111111011111000110111111011111010111110101110100011110110100100100101111111111111111011110001100011101011101111010111111000000011100111001011110111110110110101100011100101110010001111110011110110101011001101101110001001111110110111111110110011101100111011111011010110011010100011111101101000100010001111110110101000010110111111111111101111001011101011000000101011011101111001010110011111101100110011100101101110111100011011111100110111111111011111001110110000010010111001111110010111111010110010100011101111100111011111011110110101110101101100000001011101001111111000001110010110111011111111011110110111011001111111101000101110111110111001110001001011011010111111011000111111111101111111100000110110011110011010110101101111101000101101011110111001100110111111100111101001000001001110101110111111110011101001011111011010110111100001110110011111010111111011111110111010101110011010100100110111111111011011011010100001001100010111101110110111001110011011111101111001001111111111100110101111011110111111111010101101011110111111101001111001011011110011111110111011110101100011111111011110111101011111011011110111100100101101101111110111110011110100011010111001100011111110101111101100011111111010111011100011110110111101110001111111110011011101111111010010110010100111111111111111010101111111101111010001010001001101110001100101101101001000101111110110110011010101100101101100110011111010011000010111001011110110110101101010011110011101101100011110110011100010111100111101001000011101110111100111010101111011111001100111011010111001101101110000011011000111101111010111001101111111101110111010110111110111011111101101001001110110011111011101111010001111011111100110011100111011111111001111111111010010001111111111001011010010101110111101111111001011110010111101011111111111111000001111100101111111011101101110011110111101110110111101001100000110000111110001010010111111111011011011011111110111101101011011111101101011100111111101001111011110011101101111010111011011100111100101111111011100111101101010101000111111111101101101111111101110011111111101011101011111111010110110101111001111010011100011111011111100001101011010110101100011111101100111110011011110100110001111011110100111010111111010110111111111011001011111111011111100110110111100111110010011110110011011110110001111011100111101101110011101001101100110110111101000011110011010110101111111111011101110110100101110100011110101010101110111011111101111001011011100101011011010111111010111100000011010011111010110101001111111011101000001010011101111100101111011111111111010110111111011100110111001011001011111111101110111011001111111111111110010101101011011010011101110111000011111010111001011111111111101011111011110100011111010010101110111100110111011010000111001001001111110010110011101110101101011011110001001011100000100101111111100101111011010111111101011100011100111011100100101100111101001011110011001100110001000111110110110001110110111100110111111100111111111101110111111111000001110110101110110010011101110100111001001110110110101101111001001111111100101101101101011101111111010011011101011110111010000011101111001101011111011011110111101010101110101100111110011001111101111111011101001101111111111010001011011010110110001110111111110011111111001110100101111011111110100111110111110011111110011111101111110101100100001110110111110101110011100101111100110111111011111100101111110100001010011110010110101111110010010011100001011001011010101110111011111010101101001101010101111110111011110111101111111111110111011111010101011000110001110111111110111010110110111111110101101111001101111010111010110101110011101111011111111010111111111101010011001101111111011011101110011100101110001111011111010110111111110101011111010111111110111110011111110111001011100111111110111110101101110011011110011110101111111111011011101111110110001001111101100100000111110101010000110011111101011111101111100110011111011010011011011010000001101111111011010111100100111100101101011010101010010111110010010111010001011101011111110000011111010110111101011101101101010010011100111011010110011111110010010111111101011111111111101111111110101100101111111110000110011000101011110111010110011001011000011000001000100110011100111111110011011111111001010011110011101101110011011110010101011101011111010101011001111110010111011111001100100110011010011100110111101010111101110101011111111111111000101111111011010111111010010000101111010101001111111001111010000111111010011111111010001010011011100111111001110011111011101010001111111011001001101111111010111101000111001010111001011111111011110001001111111110111111011100110101111010111101011111111100010000111011111011000111111111111100111011001001111001111110000101110100011101111111101110111111111111111110110001101010101110111110111101111110011010111011101111110111111011101111111001111111011110111111"
asked Jan 27, 2019 at 13:53
\$\endgroup\$
2
  • \$\begingroup\$ From the don't-ask help page (emphasis added): "Code Review is for open-ended questions about code that already works correctly (to the best of your knowledge)." \$\endgroup\$ Commented Jan 28, 2019 at 9:21
  • \$\begingroup\$ Thanks for pointing out, I will keep this in mind ad post in appropriate forum next time. \$\endgroup\$ Commented Jan 28, 2019 at 13:11

2 Answers 2

1
\$\begingroup\$

Your algorithm does not reset the counters when necessary.

Assume an input with a large number of 0s followed by 10 followed by a large number of 1s: 000...00010111...111.

The result should be 3 since there are three substrings 01, 10, and 01 that satisfy the requirement. However, since count0 is not reset, it stays large and lets total be incremented for each trailing 1.

answered Jan 27, 2019 at 16:01
\$\endgroup\$
1
\$\begingroup\$

By utilizing the power of pattern matching, your (faulty) algorithm can be expressed in a much more succinct manner that is also (IMHO) easier to read and comprehend.

def countBinarySubstrings(s: String): Int =
 s.foldLeft((0, 0, 0)) {
 case ((zeros,0 ,ttl), '0') => (zeros+1, 0 , ttl)
 case ((0 ,ones,ttl), '1') => (0 , ones+1, ttl)
 case ((zeros,ones,ttl), '0') => (zeros+1, ones-1, ttl+1)
 case ((zeros,ones,ttl), '1') => (zeros-1, ones+1, ttl+1)
 case _ => throw new Error("bad string")
 }._3

Here's a reworking of your basic algorithm. It fixes the bug (I believe) by updating the running total only at the transitions from 0-to-1 or 1-to-0.

def countBinarySubstrings(s: String): Int = {
 val (runningTotal, countA, countB, _) = s.foldLeft((0, 0, 0, '_')) {
 case ((rt, otherCnt, thisCnt, prevC), currC) =>
 if (prevC == currC) //same Char
 (rt, otherCnt, thisCnt + 1, currC) //increment this-Char count
 else //transition
 //update running total
 //move this-count to other-count position
 //reset this-count
 (rt + (otherCnt min thisCnt), thisCnt, 1, currC)
 }
 runningTotal + (countA min countB) //final update
}
answered Jan 28, 2019 at 11:44
\$\endgroup\$

Your Answer

Draft saved
Draft discarded

Sign up or log in

Sign up using Google
Sign up using Email and Password

Post as a guest

Required, but never shown

Post as a guest

Required, but never shown

By clicking "Post Your Answer", you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.