Sorry for the typescript,typescript; I felt more confident dointdoing it that way, but it should be fine to just remove the typings...
Sorry for the typescript, I felt more confident doint it that way, but it should be fine to just remove the typings...
Sorry for the typescript; I felt more confident doing it that way, but it should be fine to just remove the typings...
Let's define the inverse of mod m
as invmod_m
(5) invmod_m(x mod m) = x
(6) invmod_m(x) mod m = x
(57) invmodinvmod_m((b − a) mod m, m) == invmodinvmod_m(0, m)
from (5) we can simplify the left side
(68) b - a == invmodinvmod_m(0, m)
(79) b == a + invmodinvmod_m(0, m)
(810) b mod m == (a + invmodinvmod_m(0, m)) mod m
(911) b mod m == a mod m + invmodinvmod_m(0, m) mod m
from (6) we see that invmodinvmod_m(0, m) mod m
is clearly zero so we have
(1012) (b mod m) == (a mod m)
(5) invmod((b − a) mod m, m) == invmod(0, m)
(6) b - a == invmod(0, m)
(7) b == a + invmod(0, m)
(8) b mod m == (a + invmod(0, m)) mod m
(9) b mod m == a mod m + invmod(0, m) mod m
invmod(0, m) mod m
is clearly zero so we have
(10) (b mod m) == (a mod m)
Let's define the inverse of mod m
as invmod_m
(5) invmod_m(x mod m) = x
(6) invmod_m(x) mod m = x
(7) invmod_m((b − a) mod m) == invmod_m(0)
from (5) we can simplify the left side
(8) b - a == invmod_m(0)
(9) b == a + invmod_m(0)
(10) b mod m == (a + invmod_m(0)) mod m
(11) b mod m == a mod m + invmod_m(0) mod m
from (6) we see that invmod_m(0) mod m
is zero so we have
(12) (b mod m) == (a mod m)
by applying the mod inverse we get infinitely many equations, but that' ok, they look all the same and we can parametrizedeal with an integer k
them all at once
(5) invmod((b − a) mod m, m) == invmod(0, m)
(6) b - a == k*m + invmod(0, m)
(7) b == a + k*minvmod(0, m)
(8) b mod m == (a + k*minvmod(0, m)) mod m
(9) b mod m == a mod m + invmod(k*m0, m) mod m
invmod(k*m0, m) mod m
is clearly zero so we have
by applying the mod inverse we get infinitely many equations, but that' ok, they look all the same and we can parametrize with an integer k
(5) invmod((b − a) mod m, m) == invmod(0, m)
(6) b - a == k*m + 0
(7) b == a + k*m
(8) b mod m == (a + k*m) mod m
(9) b mod m == a mod m + (k*m) mod m
(k*m) mod m
is clearly zero so we have
by applying the mod inverse we get infinitely many equations, but that' ok, we can deal with them all at once
(5) invmod((b − a) mod m, m) == invmod(0, m)
(6) b - a == invmod(0, m)
(7) b == a + invmod(0, m)
(8) b mod m == (a + invmod(0, m)) mod m
(9) b mod m == a mod m + invmod(0, m) mod m
invmod(0, m) mod m
is clearly zero so we have